首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Memory and Computation Trade-Offs for Efficient I-Vector Extraction
【24h】

Memory and Computation Trade-Offs for Efficient I-Vector Extraction

机译:高效I矢量提取的内存和计算折衷

获取原文
获取原文并翻译 | 示例

摘要

This work aims at reducing the memory demand of the data structures that are usually pre-computed and stored for fast computation of the i-vectors, a compact representation of spoken utterances that is used by most state-of-the-art speaker recognition systems. We propose two new approaches allowing accurate i-vector extraction but requiring less memory, showing their relations with the standard computation method introduced for eigenvoices, and with the recently proposed fast eigen-decomposition technique. The first approach computes an i-vector in a Variational Bayes (VB) framework by iterating the estimation of one sub-block of i-vector elements at a time, keeping fixed all the others, and can obtain i-vectors as accurate as the ones obtained by the standard technique but requiring only 25% of its memory. The second technique is based on the Conjugate Gradient solution of a linear system, which is accurate and uses even less memory, but is slower than the VB approach. We analyze and compare the time and memory resources required by all these solutions, which are suited to different applications, and we show that it is possible to get accurate results greatly reducing memory demand compared with the standard solution at almost the same speed.
机译:这项工作旨在减少通常为快速计算i向量而预先计算和存储的数据结构的内存需求,这是大多数先进的说话人识别系统所使用的语音的紧凑表示形式。我们提出了两种新方法,它们可以精确地提取i-vector,但需要较少的内存,显示了它们与为特征语音引入的标准计算方法以及最近提出的快速特征分解技术之间的关系。第一种方法是通过迭代一次对i向量元素的一个子块的估计,同时使所有其他i子元素保持固定,来在变分贝叶斯(VB)框架中计算i向量,并且可以获得与i一样精确的i向量。通过标准技术获得的内存,但仅需要其内存的25%。第二种技术基于线性系统的共轭梯度解决方案,该解决方案精确且使用的内存更少,但比VB方法慢。我们分析和比较了所有这些解决方案所需的时间和内存资源,这些解决方案适合于不同的应用程序,并且我们证明与标准解决方案相比,几乎可以以相同的速度获得准确的结果,从而大大减少了内存需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号