首页> 外文期刊>Audio, Speech, and Language Processing, IEEE Transactions on >Low-rank Approximation Based Multichannel Wiener Filter Algorithms for Noise Reduction with Application in Cochlear Implants
【24h】

Low-rank Approximation Based Multichannel Wiener Filter Algorithms for Noise Reduction with Application in Cochlear Implants

机译:基于低秩逼近的多通道维纳滤波算法在人工耳蜗中的降噪

获取原文
获取原文并翻译 | 示例

摘要

This paper presents low-rank approximation based multichannel Wiener filter algorithms for noise reduction in speech plus noise scenarios, with application in cochlear implants. In a single speech source scenario, the frequency-domain autocorrelation matrix of the speech signal is often assumed to be a rank-1 matrix, which then allows to derive different rank-1 approximation based noise reduction filters. In practice, however, the rank of the autocorrelation matrix of the speech signal is usually greater than one. Firstly, the link between the different rank-1 approximation based noise reduction filters and the original speech distortion weighted multichannel Wiener filter is investigated when the rank of the autocorrelation matrix of the speech signal is indeed greater than one. Secondly, in low input signal-to-noise-ratio scenarios, due to noise non-stationarity, the estimation of the autocorrelation matrix of the speech signal can be problematic and the noise reduction filters can deliver unpredictable noise reduction performance. An eigenvalue decomposition based filter and a generalized eigenvalue decomposition based filter are introduced that include a more robust rank-1, or more generally rank-R, approximation of the autocorrelation matrix of the speech signal. These noise reduction filters are demonstrated to deliver a better noise reduction performance especially in low input signal-to-noise-ratio scenarios. The filters are especially useful in cochlear implants, where more speech distortion and hence a more aggressive noise reduction can be tolerated.
机译:本文提出了基于低秩逼近的多通道维纳滤波器算法,用于语音和噪声场景中的降噪,并应用于耳蜗植入物中。在单个语音源场景中,语音信号的频域自相关矩阵通常被假定为秩1矩阵,然后允许推导不同的基于秩1近似的降噪滤波器。然而,实际上,语音信号的自相关矩阵的秩通常大于一。首先,当语音信号的自相关矩阵的秩的确大于1时,研究了基于不同秩近似的降噪滤波器与原始语音失真加权多通道维纳滤波器之间的联系。其次,在低输入信噪比的情况下,由于噪声的不平稳性,语音信号自相关矩阵的估计可能会出现问题,并且降噪滤波器可能会提供不可预测的降噪性能。引入了基于特征值分解的滤波器和基于广义特征值分解的滤波器,其包括语音信号的自相关矩阵的更鲁棒的秩1或更一般地秩R。这些降噪滤波器被证明具有更好的降噪性能,尤其是在低输入信噪比情况下。该滤波器在人工耳蜗中特别有用,因为在这种情况下,可以容忍更多的语音失真,因此可以降低噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号