首页> 外文期刊>Asymptotic analysis >Attractors for the semiflow associated with a class of doubly nonlinear parabolic equations
【24h】

Attractors for the semiflow associated with a class of doubly nonlinear parabolic equations

机译:与一类双重非线性抛物方程有关的半流吸引子

获取原文
获取原文并翻译 | 示例

摘要

We address a parabolic equation of the form α(ut) - Δu + W'(u) = f, complemented with initial and either Dirichlet or Neumann homogeneous boundary conditions. The "double nonlinearity" is due to the simultaneous presence of the maximal monotone function a and of the derivative W' of a smooth, but possibly nonconvex, potential W; f is a source term. After recalling an existence result for weak solutions, we show that, among all the weak solutions, at least one for each admissible choice of the initial datum "regularizes" for t > 0. Moreover, the class of "regularizing" solutions constitutes a semiflow S for which we prove unique continuation for strictly positive times. Finally, we address the long time behavior of S. In particular, we can prove existence of both global and exponential attractors and investigate the structure of ω-limits of single trajectories.
机译:我们讨论形式为α(ut)-Δu+ W'(u)= f的抛物线方程,并补充初始条件和Dirichlet或Neumann齐次边界条件。 “双重非线性”是由于同时存在最大单调函数a和平滑(但可能不为凸)的势W的导数W'而引起的; f是源项。回顾了弱解的存在结果之后,我们表明,在所有弱解中,对于t> 0的初始基准的每个可允许选择,至少有一个“正则化”。此外,“正则化”解的类别构成了半流程对于S,我们证明在严格的正数时间内唯一连续。最后,我们解决了S的长时间行为。特别是,我们可以证明整体吸引子和指数吸引子的存在,并研究单个轨迹的ω-极限的结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号