首页> 外文期刊>Asymptotic analysis >Exponential convergence to equilibrium of solutions of the Kac equation and homogeneous Boltzmann equation for Maxwellian without angular cut-off
【24h】

Exponential convergence to equilibrium of solutions of the Kac equation and homogeneous Boltzmann equation for Maxwellian without angular cut-off

机译:无角截断的麦克斯韦方程的Kac方程和齐次Boltzmann方程解的指数收敛性

获取原文
获取原文并翻译 | 示例

摘要

For the Kac equation and homogeneous Boltzmann equation ofMaxwellian without Grad's angular cut-off, we prove an exponential convergence towards the equilibrium as t -> infinity in a weak norm which is equivalent to the weak convergence of measures, extending results of Gabetta, Toscani and Wennberg (J. Stat. Phys. 81 (1995), 901-934) and Carlen, Gabetta and Toscani (Commun. Math. Phys. 199 (1999), 521-546) from the cut-off case to the non-cut-off case. We give quantitative estimates of the convergence rate, which are governed by the spectral gap of the linearized collision operator. We then prove a uniform bound in time on Sobolev norms of the solutions. The results are then combined with some interpolation inequalities, to obtain the rate of the exponential convergence in the strong L-1 norm, as well as various Sobolev norms.
机译:对于没有Grad角截止的Maxwellian的Kac方程和齐次Boltzmann方程,我们证明了在弱范数中,当t->无穷大时,朝向平衡的指数收敛,这等效于测度的弱收敛,从而扩展了Gabetta,Toscani和Wennberg(J. Stat。Phys。81(1995),901-934)和Carlen,Gabetta和Toscani(Commun。Math。Phys。199(1999),521-546)断案。我们给出收敛速度的定量估计值,该估计值由线性化碰撞算子的谱隙控制。然后,我们证明了Sobolev规范在时间上的统一界限。然后将结果与一些插值不等式组合,以获得强L-1范数以及各种Sobolev范数的指数收敛速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号