首页> 外文期刊>Assembly Automation >3D long-term recurrent convolutional networks for human sub-assembly recognition in human-robot collaboration
【24h】

3D long-term recurrent convolutional networks for human sub-assembly recognition in human-robot collaboration

机译:3D人体机器人协作中的人类子组装识别的长期经常性卷积网络

获取原文
获取原文并翻译 | 示例

摘要

Purpose - Human assembly process recognition in human-robot collaboration (HRC) has been studied recently. However, most research works do not cover high-precision and long-timespan sub-assembly recognition. Hence this paper aims to deal with this problem. Design/methodology/approach - To deal with the above-mentioned problem, the authors propose a 3D long-term recurrent convolutional networks (LRCN) by combining 3D convolutional neural networks (CNN) with long short-term memory (LSTM). 3D CNN behaves well in human action recognition. But when it comes to human sub-assembly recognition, the accuracy of 3D CNN is very low and the number of model parameters is huge, which limits its application in human sub-assembly recognition. Meanwhile, LSTM has the incomparable superiority of long-time memory and time dimensionality compression ability. Hence, by combining 3D CNN with LSTM, the new approach can greatly improve the recognition accuracy and reduce the number of model parameters. Findings - Experiments were performed to validate the proposed method and preferable results have been obtained, where the recognition accuracy increases from 82% to 99%, recall ratio increases from 95% to 100% and the number of model parameters is reduced more than 8 times. Originality/value - The authors focus on a new problem of high-precision and long-timespan sub-assembly recognition in the area of human assembly process recognition. Then, the 3D LRCN method is a new method with high-precision and long-timespan recognition ability for human subassembly recognition compared to 3D CNN method. It is extraordinarily valuable for the robot in HRC. It can help the robot understand what the sub-assembly human cooperator has done in HRC.
机译:目的 - 最近已经研究了人体机器人协作(HRC)中的人体组装过程认可。然而,大多数研究工作不包括高精度和长时间的子装配识别。因此,本文旨在解决这个问题。设计/方法/方法 - 处理上述问题,作者通过将3D卷积神经网络(CNN)与长短期存储器(LSTM)组合来提出3D长期经常性卷积网络(LRCN)。 3D CNN在人类行动识别中表现得很好。但是,当涉及人的子组装识别时,3D CNN的准确性非常低,模型参数的数量是巨大的,这限制了其在人的子组装识别中的应用。同时,LSTM具有可无与伦比的存储器和时间维度压缩能力的优越性。因此,通过将3D CNN与LSTM组合,新方法可以大大提高识别准确性并减少模型参数的数量。研究结果 - 进行实验以验证所提出的方法,并获得了优选的结果,其中识别精度从82%增加到99%,召回比率从95%增加到100%,模型参数的数量减少超过8倍。 。原创性/价值 - 作者侧重于人体组装过程识别领域的高精度和长时间母组组装识别的新问题。然后,3D LRCN方法是与3D CNN方法相比,具有高精度和长时间识别能力的新方法,用于人类子组件识别。在HRC中的机器人来说是非常有价值的。它可以帮助机器人了解子组件人类合作者在HRC中已经完成了什么。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号