首页> 外文期刊>ASHRAE Transactions >Creating an Energy Model of an Entire University Campus: Part 1: Preliminary Assessment of Building Modeling Techniques
【24h】

Creating an Energy Model of an Entire University Campus: Part 1: Preliminary Assessment of Building Modeling Techniques

机译:创造整个大学校园的能源模型:第1部分:建筑建模技术的初步评估

获取原文
获取原文并翻译 | 示例

摘要

The Ohio State University, like many other communities, is embarking on a large-scale retrofit construction project with twin goals of increasing energy efficiency and better managing power demand. In order to support this effort and explore new strategies and techniques, we are in the process of building an energy model of the entire campus that has the fidelity and computational efficiency needed to be a decision-making tool. As a first step in this larger effort, we are building models of campus buildings that are succinct enough to be integrated into a larger campus model. In this paper, we explore four modeling techniques for creation of these models. To identify and evaluate each model, we used hourly smart meter data and meta-data of an academic building on the Ohio State University campus. In the first approach, the building is modeled with the Energyplus (E+) engine and modeling parameters are found with a gradient descent approach. Next, choosing different physical features, three different machine learning (ML) techniques are used to model and predict the power demand and peak load. To do so, feature engineering is conducted on the training data-set to find proper features and add physical features. All measured datapoints are preprocessed and saved in two training and test data-sets. Then, different ensemble models, including Feed Forward Neural Network (FFNN) method, support vector regressor (SVR), and decision tree regression (XGB), are implemented and optimized to get the best results in terms of prediction accuracy and test data-set modelling. Results show that the engineering method implemented in E+ can predict cooling demand with a smaller training dataset, and the mean squared error of the E+ model is 70%, 50%, and 7% less than the FFNN, XGB, and SVM methods, respectively. On the other hand, machine learning techniques are simpler to develop, can predict the amount of chilled water with smaller number of sensors (features) and are more efficient in terms of computational cost.
机译:与许多其他社区一样,俄亥俄州州立大学正在踏上大规模改造建设项目,以增加能源效率,更好地管理电力需求。为了支持这项努力并探索新的策略和技术,我们正在建立整个校园的能源模型,该校园具有富力和计算效率所需的决策工具。作为这种更大的努力的第一步,我们正在建立校园建筑的模型,这很简单,足以融入更大的校园模型。在本文中,我们探索了用于创建这些模型的四种建模技术。要识别和评估每个模型,我们使用了俄亥俄州州立大学校园的每小时智能仪表数据和学术建筑的元数据。在第一种方法中,该建筑物以EnergyPlus(E +)发动机(E +)发动机(E +)发动机和建模参数进行建模,并以梯度下降方法找到建模参数。接下来,选择不同的物理特征,三种不同的机器学习(ML)技术用于模拟和预测电源需求和峰值负载。为此,请在培训数据集上进行功能工程,以查找适当的功能并添加物理功能。所有测量的DataPoints都被预处理并保存在两个训练和测试数据集中。然后,实现和优化了不同集合模型,包括馈送前神经网络(FFNN)方法,支持向量回归(SVR)和决策树回归(XGB)以获得最佳结果,以获得预测准确性和测试数据集的最佳结果造型。结果表明,E +中实现的工程方法可以预测具有较小训练数据集的冷却需求,E +模型的平均平方误差分别小于FFNN,XGB和SVM方法的70%,50%和7% 。另一方面,机器学习技术更简单地发展,可以预测具有较少数量的传感器(特征)的冷水量,并且在计算成本方面更有效。

著录项

  • 来源
    《ASHRAE Transactions》 |2021年第1期|400-408|共9页
  • 作者单位

    College of Engineering at the Ohio State University Columbus OH;

    College of Engineering at the Ohio State University Columbus OH;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号