首页> 外文期刊>Artificial life and robotics >Development of hardware neural networks generating driving waveform for electrostatic actuator
【24h】

Development of hardware neural networks generating driving waveform for electrostatic actuator

机译:静电执行器产生驱动波形的硬件神经网络的开发

获取原文
获取原文并翻译 | 示例

摘要

The authors are studying to control the locomotion of the microrobot system using hardware neural networks (HNN). In previous research, a waveform generator was used to drive the electrostatic actuators of the microrobot. Once the driving circuit is constructed using HNN, the controlling circuit and the driving circuit can be integrated into a single chip. In this paper, the authors will propose the driving circuit using HNN. The HNN consists of two self-oscillating cell body models, six separately-excited cell body models, four excitatory-synaptic models, and six inhibitory-synaptic models. The single self-oscillating cell body model outputs the electrical oscillated square waveform as 3 MHz of frequency. The proposed HNN generates a long delay without using large capacitors. As a result, the proposed HNN can generate the driving waveform of electrostatic actuators with variable frequency. The frequency of the driving waveform could vary from 50 to 100 Hz. Also, the proposed HNN connected to the Central Pattern Generator (CPG) model. The CPG model with proposed HNN outputs the driving waveform of the electrostatic actuator which can perform the tripod gait pattern of the microrobot.
机译:作者正在研究使用硬件神经网络(HNN)来控制微机管系统的运动。在先前的研究中,使用波形发生器来驱动微机器的静电致动器。一旦使用HNN构造驱动电路,控制电路和驱动电路就可以集成到单个芯片中。在本文中,作者将使用HNN提出驱动电路。 HNN由两个自振荡的细胞体型组成,六种单独激发的细胞体型,四种兴奋性突触模型和六种抑制突触模型。单个自振动单元模型输出电振荡方波形为3 MHz的频率。所提出的HNN在不使用大电容器的情况下产生长延迟。结果,所提出的HNN可以以可变频率产生静电致动器的驱动波形。驱动波形的频率可以从50到100Hz变化。此外,所提出的HNN连接到中心图案发生器(CPG)模型。具有所提出的HNN的CPG模型输出了静电致动器的驱动波形,其可以执行微机器的三脚架步态图案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号