首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >A Hardware-Friendly Approach Towards Sparse Neural Networks Based on LFSR-Generated Pseudo-Random Sequences
【24h】

A Hardware-Friendly Approach Towards Sparse Neural Networks Based on LFSR-Generated Pseudo-Random Sequences

机译:基于LFSR生成的伪随机序列的一种硬件友好态度的稀疏神经网络

获取原文
获取原文并翻译 | 示例

摘要

The increase in the number of edge devices has led to the emergence of edge computing where the computations are performed on the device. In recent years, deep neural networks (DNNs) have become the state-of-the-art method in a broad range of applications, from image recognition, to cognitive tasks to control. However, neural network models are typically large and computationally expensive and therefore not deployable on power and memory constrained edge devices. Sparsification techniques have been proposed to reduce the memory foot-print of neural network models. However, they typically lead to substantial hardware and memory overhead. In this article, we propose a hardware-aware pruning method using linear feedback shift register (LFSRs) to generate the locations of non-zero weights in real-time during inference. We call this LFSR-generated pseudo-random sequence based sparsity (LGPS) technique. We explore two different architectures for our hardware-friendly LGPS technique, based on (1) row/column indexing with LFSRs and (2) column-wise indexing with nested LFSRs, respectively. Using the proposed method, we present a total saving of energy and area up to 37.47% and 49.93% respectively and speed up of $1.53imes $ w.r.t the baseline pruning method, for the VGG-16 network on down-sampled ImageNet.
机译:边缘设备数量的增加导致了边缘计算的出现,其中在设备上执行计算。近年来,深度神经网络(DNN)已成为广泛的应用,从图像识别到控制认知任务的最先进的方法。然而,神经网络模型通常很大,并且计算地昂贵,因此不可在电源和存储器受限的边缘设备上部署。已经提出了稀疏技术来减少神经网络模型的存储器脚印。但是,它们通常会导致大量硬件和内存开销。在本文中,我们提出了一种使用线性反馈移位寄存器(LFSR)的硬件感知修剪方法,以在推理期间实时生成非零权重的位置。我们称之为基于LFSR生成的伪随机序列的稀疏性(LGPS)技术。我们为我们的硬件友好的LGPS技术探索了两个不同的架构,基于(1)行/列索引分别使用LFSRS和(2)列 - WISE索引分别使用嵌套LFSRS索引。使用所提出的方法,我们的能量和面积的总节省高达37.47%和49.93%,加速<内联XMLNS:MML =“http://www.w3.org/1998/math/mathml “xmlns:xlink =”http://www.w3.org/1999/xlink“> $ 1.53 times $ wrt the baseline修剪方法,用于vgg-16网络上的下采样的想象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号