首页> 外文期刊>Artificial life and robotics >Synergistic attention U-Net for sublingual vein segmentation
【24h】

Synergistic attention U-Net for sublingual vein segmentation

机译:协同注意U-Net用于舌下静脉分割

获取原文
获取原文并翻译 | 示例

摘要

The tongue is one of the most sensitive organs of the human body. The changes in the tongue indicate the changes of the human state. One of the features of the tongue, which can be used to inspect the blood circulation of human, is the shape information of the sublingual vein. Therefore, this paper aims to segment the sublingual vein from the RGB images of the tongue. In traditional segmentation network training based on deep learning, the resolution of the input image is generally resized to save training costs. However, the size of the sublingual vein is much smaller than the size of the tongue relative to the entire image. The resized inputs are likely to cause the network to fail to capture target information for the smaller segmentation and produce an "all black" output. This study first pointed out that the training of the segmentation of the sublingual vein compared to the tongue segmentation is much more difficult through a small dataset. At the same time, we also compared the effects of different input sizes on small sublingual segmentation. In response to the problems that arise, we propose a synergistic attention network. By dismembering the entire encoder-decoder framework and updating the parameters synergistically, the proposed network can not only improve the convergence speed of training process, but also avoid the problem of falling into the optimal local solution and maintains the stability of training without increasing the training cost and additional regional auxiliary labels.
机译:舌头是人体最敏感的器官之一。舌头的变化表明人类状态的变化。舌头的特征之一是舌下静脉的形状信息,可以用来检查人的血液循环。因此,本文旨在从舌的RGB图像中分割舌下静脉。在基于深度学习的传统分割网络训练中,通常调整输入图像的分辨率以节省训练成本。但是,相对于整个图像,舌下静脉的大小远小于舌头的大小。调整后的输入可能会导致网络无法捕获较小分段的目标信息,并产生“全黑”输出。这项研究首先指出,通过一个小的数据集,与舌头分割相比,舌下静脉分割的训练要困难得多。同时,我们还比较了不同输入量对小舌下分割的影响。针对出现的问题,我们提出了一个协同注意网络。通过分解整个编码器-解码器框架并协同更新参数,所提出的网络不仅可以提高训练过程的收敛速度,而且可以避免陷入最优局部解的问题,并且可以在不增加训练量的情况下保持训练的稳定性。费用和其他区域辅助标签。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号