首页> 外文期刊>Artificial life and robotics >A visual-inspection system using a self-organizing map
【24h】

A visual-inspection system using a self-organizing map

机译:使用自组织图的视觉检查系统

获取原文
获取原文并翻译 | 示例

摘要

Visual inspections by hand often cause bottlenecks in production processes in industries. Therefore, it is desirable to be mechanized and automated. In order to satisfy these requirements, we apply image recognition using a self-organizing map (SOM) to visual inspection equipment. The SOM maps high-dimensional input data onto a low-dimensional (typically two-dimensional) space. Through the mapping, the data are automatically clustered based on their similarity. Any unknown data which are input onto the self-organized map are also mapped onto it according to their similarity. The categories of the unknown data are thus recognized based on their positions on the map. The reason we use a SOM for inspections is that users can then know the similarity distribution of all data at a glance on the map, and understand the mechanism of the recognition visually. We have developed a visual inspection system using a SOM, and have evaluated it using actual product images. We have obtained high recognition accuracies of 98% and 96% for one- and two-inspection-point tests, respectively, for a real industrial product.
机译:手工目视检查通常会导致工业生产过程中的瓶颈。因此,期望被机械化和自动化。为了满足这些要求,我们将使用自组织图(SOM)的图像识别应用于视觉检查设备。 SOM将高维输入数据映射到低维(通常是二维)空间。通过映射,数据将基于它们的相似性自动聚类。输入到自组织地图上的任何未知数据也将根据它们的相似性映射到其上。因此,根据未知数据的类别在地图上的位置进行识别。我们使用SOM进行检查的原因是,用户可以一目了然地在地图上了解所有数据的相似性分布,并直观地了解识别机制。我们已经开发了使用SOM的外观检查系统,并已使用实际产品图像对其进行了评估。对于真实的工业产品,我们在一个和两个检验点的测试中分别获得了98%和96%的高识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号