首页> 外文期刊>Artificial life and robotics >Gaussian radial basis function neural network controller of a synchronous reluctance motor in electric motorcycle applications
【24h】

Gaussian radial basis function neural network controller of a synchronous reluctance motor in electric motorcycle applications

机译:同步磁阻电动机在电动摩托车中的高斯径向基函数神经网络控制器

获取原文
获取原文并翻译 | 示例

摘要

In this article, a sliding mode control (SMC) design based on a Gaussian radial basis function neural network (GRBFNN) is proposed for the synchronous reluc tance motor (SynRM) system in electrical motorcycle appli cations. The conventional SMC assumes that the upper lumped boundaries of parameter variations and external disturbances are known, and the sign function is used. This causes high-frequency chattering and the high-gain phe nomenon. In order to avoid these drawbacks, the proposed method utilizes the Lyapunov stability method and the steep descent rule to guarantee the convergence asymptoti cally, and reduce the magnitude of the chattering or avoid it completely. Finally, numerical simulations are shown to illustrate the good performance of our controller design.
机译:本文提出了一种基于高斯径向基函数神经网络(GRBFNN)的滑模控制(SMC)设计,用于电动摩托车中的同步磁阻电机(SynRM)系统。传统的SMC假定参数变化和外部干扰的上集总边界是已知的,并且使用了符号函数。这会导致高频震颤和高增益现象。为了避免这些缺点,提出的方法利用Lyapunov稳定性方法和陡峭下降规则来保证收敛渐近性,并减小或完全避免了颤动。最后,数值模拟显示了我们控制器设计的良好性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号