首页> 外文期刊>Artificial intelligence >Encoding implicit relation requirements for relation extraction: A joint inference approach
【24h】

Encoding implicit relation requirements for relation extraction: A joint inference approach

机译:编码隐式关系要求以提取关系:一种联合推理方法

获取原文
获取原文并翻译 | 示例

摘要

Relation extraction is the task of identifying predefined relationship between entities, and plays an essential role in information extraction, knowledge base construction, question answering and so on. Most existing relation extractors make predictions for each entity pair locally and individually, while ignoring implicit global clues available across different entity pairs and in the knowledge base, which often leads to conflicts among local predictions from different entity pairs. This paper proposes a joint inference framework that employs such global clues to resolve disagreements among local predictions. We exploit two kinds of clues to generate constraints which can capture the implicit type and cardinality requirements of a relation. Those constraints can be examined in either hard style or soft style, both of which can be effectively explored in an integer linear program formulation. Experimental results on both English and Chinese datasets show that our proposed framework can effectively utilize those two categories of global clues and resolve the disagreements among local predictions, thus improve various relation extractors when such clues are applicable to the datasets. Our experiments also indicate that the clues learnt automatically from existing knowledge bases perform comparably to or better than those refined by human. (C) 2018 Elsevier B.V. All rights reserved.
机译:关系提取是识别实体之间预定义关系的任务,在信息提取,知识库构建,问题回答等方面起着至关重要的作用。大多数现有的关系提取器会针对本地实体对每个实体对进行预测,而忽略了跨不同实体对和知识库中可用的隐式全局线索,这通常会导致来自不同实体对的局部预测之间发生冲突。本文提出了一个联合推理框架,该框架利用此类全局线索来解决局部预测之间的分歧。我们利用两种线索来生成约束,这些约束可以捕获关系的隐式类型和基数要求。可以以硬式或软式检查这些约束,可以在整数线性程序公式中有效地探索这两种约束。在英语和中文数据集上的实验结果表明,我们提出的框架可以有效地利用这两类全局线索,并解决局部预测之间的分歧,从而在这些线索适用于数据集时改进各种关系提取器。我们的实验还表明,从现有知识库中自动学到的线索的表现与人类提炼的线索相比,甚至更好。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号