首页> 外文期刊>Archives of Computational Methods in Engineering >Complementary-Energy Methods for Geometrically Non-linear Structural Models: An Overview and Recent Developments in the Analysis of Frames
【24h】

Complementary-Energy Methods for Geometrically Non-linear Structural Models: An Overview and Recent Developments in the Analysis of Frames

机译:几何非线性结构模型的互补能量方法:框架分析的概述和最新进展

获取原文
获取原文并翻译 | 示例

摘要

Boundary-value problems in solid mechanics are often addressed, from both theoretical and numerical points of view, by resorting to displacement/rotation-based varia-tional formulations. For conservative problems, such formulations may be constructed on the basis of the Principle of Stationary Total Potential Energy. Small deformation problems have a unique solution and, as a consequence, their corresponding total potential energies are globally convex. In this case, under the so-called Legendre transform, the total potential energy can be transformed into a globally concave total complementary energy only expressed in terms of stress variables. However, large deformation problems have, in general, for the same boundary conditions, multiple solutions. As a result, their associated total potential energies are globally non-convex. Notwithstanding, the Principle of Stationary Total Potential Energy can still be regarded as a minimum principle, only involving displacement/rotation fields. The existence of a maximum complementary energy principle defined in a truly dual form has been subject of discussion since the first contribution made by Hellinger in 1914. This paper provides a survey of the complementary energy principles and also accounts for the evolution of the complementary-energy based finite element models for geometrically non-linear solid/structural models proposed in the literature over the last 60 years, giving special emphasis to the complementary-energy based methods developed within the framework of the geometrically exact Reissner-Simo beam theory for the analysis of structural frames.
机译:固态力学中的边值问题通常从理论和数值两个角度通过采用基于位移/旋转的变量公式来解决。对于保守问题,可以在固定总势能原理的基础上构造此类公式。小形变问题具有独特的解决方案,因此,它们相应的总势能整体呈凸形。在这种情况下,在所谓的勒让德变换下,总势能可以转化为仅以应力变量表示的整体凹形总互补能。但是,对于相同的边界条件,大的变形问题通常具有多种解决方案。结果,它们相关的总势能总体上是不凸的。尽管如此,静止总势能原理仍然可以看作是最小原理,仅涉及位移/旋转场。自从赫林格(Hellinger)在1914年做出第一笔贡献以来,以真正的双重形式定义的最大互补能量原理的存在一直是讨论的主题。本文对互补能量原理进行了综述,并解释了互补能量的演变过去60年中在文献中提出的用于几何非线性实体/结构模型的有限元模型,特别强调了在几何精确的Reissner-Simo梁理论框架内开发的基于互补能的方法,用于分析结构框架。

著录项

  • 来源
    《Archives of Computational Methods in Engineering》 |2011年第4期|p.405-440|共36页
  • 作者

    H.A.F.A. Santos;

  • 作者单位

    Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street,1 University Station C0200, Austin, TX 78712, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号