首页> 外文期刊>Archives of Computational Methods in Engineering >Process Crystallographic Simulation for Biocompatible Piezoelectric Material Design and Generation
【24h】

Process Crystallographic Simulation for Biocompatible Piezoelectric Material Design and Generation

机译:生物相容性压电材料设计与生产的过程晶体学模拟

获取原文
获取原文并翻译 | 示例

摘要

From 1880's discovery of piezoelectricity by French physicists Jacques and Pierre Curie, a huge number of piezoelectric materials have been developed and applied to the industrial equipment and scientific instrument. In the middle of 20th century, most widely used ceramic piezoelectric materials, BaTiO_3 (BTO) in 1944, PbTiO_3 in 1950, and Pb(Zr,Ti)O_3 (PZT) in 1955, were discovered through "hermetic art approach." It was not CAE driven material discovery. Actually, the experimental trial and error approach is inefficient way for the material discovery. Therefore a new CAE technique to develop a new high performance piezoelectric material under a short lead time is strongly required. It can analyze material characteristics, and design material structure and generation process simultaneously before actual production. This overall CAE technique for new material design and generation, which can be called as "process crystallographic simulation," is discussed in this state-of-the-art paper, which will be able to establish a new concept of material and process design. Now, we have serious problem with the piezoelectric material. Actually, PZT is most used in the world. However, "lead," which is a component of PZT-based piezoelectric material, is the toxic material. The usage of lead and toxic materials is prohibited by the waste electrical and electronic equipment (WEEE) and the restriction on hazardous substances (RoHS). Therefore, CAE driven new biocompatible material development is recognized as urgent subject. A goal is to develop an environmentally and biologically compatible piezoelectric material, which can be applied for human healthcare devices, such as Bio-MEMS devices. Until now, we have CAE methodologies to develop a new material, such as the atomic simulation, the continuum mechanics base finite element method, and the crystal process optimization method, but these are not cooperated effectively. An overall and simultaneous computational technique is strongly required. In this review paper, we survey and discuss numerical methodologies, "process crystallographic simulation," for material and generation process design. Further, an invention of a new biocompatible piezoelectric material, jts generation and validation of a newly developed numerical technique, are demonstrated. In this paper, below described subjects are reviewed and discussed. 1. Numerical analysis technique, "process crystallographic simulation," which consists of a three-scale structure analysis and a generation process analysis. 2. Material and Process design of new biocompatible piezoelectric materials. 3. Generation of MgSiO_3 thin film by using radio-frequency (RF) magnetron sputtering system. Validation of CAE technique. Consequently, a general concept of CAE driven material discovery technique could be understood through this state-of-the-art paper.
机译:从1880年法国物理学家雅克(Jacques)和皮埃尔·居里(Pierre Curie)发现压电性以来,已开发出大量压电材料并将其应用于工业设备和科学仪器。在20世纪中叶,通过“密封技术”发现了使用最广泛的陶瓷压电材料,1944年的BaTiO_3(BTO),1950年的PbTiO_3和1955年的Pb(Zr,Ti)O_3(PZT)。这不是CAE驱动的材料发现。实际上,实验性的尝试和错误方法对于材料发现来说是低效的方式。因此,强烈需要在短的交货时间下开发新型高性能压电材料的新的CAE技术。它可以分析材料特性,并在实际生产之前同时设计材料结构和生成过程。在这篇最新论文中讨论了这种用于新材料设计和生成的整体CAE技术,称为“工艺晶体学模拟”,它将能够建立材料和工艺设计的新概念。现在,我们在压电材料方面存在严重问题。实际上,PZT在世界上使用最多。但是,作为基于PZT的压电材料的组成部分的“铅”是有毒材料。废弃电子电气设备(WEEE)和有害物质限制(RoHS)禁止使用铅和有毒物质。因此,CAE驱动的新型生物相容性材料的开发被认为是紧迫的课题。一个目标是开发一种环境和生物相容的压电材料,该压电材料可用于人类保健设备,例如Bio-MEMS设备。到目前为止,我们已经使用CAE方法来开发新材料,例如原子模拟,连续体力学基础有限元方法和晶体工艺优化方法,但是这些方法并没有有效地配合。强烈需要一种整体和同步的计算技术。在这篇综述文章中,我们调查和讨论了用于材料和生成过程设计的数值方法,“过程晶体学模拟”。此外,还说明了新的生物相容性压电材料的发明,新技术的产生和新开发的数值技术的验证。在本文中,对以下描述的主题进行了审查和讨论。 1.数值分析技术,即“过程晶体学模拟”,由三级结构分析和生成过程分析组成。 2.新型生物相容性压电材料的材料和工艺设计。 3.使用射频(RF)磁控溅射系统生成MgSiO_3薄膜。 CAE技术的验证。因此,可以通过这份最新的论文来理解CAE驱动的材料发现技术的一般概念。

著录项

  • 来源
  • 作者单位

    Department of Biomedical Sciences, Doshisha University, 1-3 Miyakodani Tatara, Kyotanabe, Kyoto 610-0394, Japan;

    Department of Mechanical Engineering, Osaka Institute of Technology, 5-16-1 Omiya Asahi-ku, Osaka, Osaka 535-8585, Japan;

    Department of Technology Management, Osaka Institute of Technology, 5-16-1 Omiya Asahi-ku, Osaka, Osaka 535-8585, Japan;

    Department of Precision Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan;

    Department of Life and Medical Sciences, Doshisha University (Now SHARP Co.), 1-3 Miyakodani Tatara, Kyotanabe, Kyoto 610-0394, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号