首页> 外文期刊>Archives of Computational Methods in Engineering >Observable Dictionary Learning for High-Dimensional Statistical Inference
【24h】

Observable Dictionary Learning for High-Dimensional Statistical Inference

机译:高维统计推断的可观察词典学习

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a method for efficiently inferring a high-dimensional distributed quantity from a few observations. The quantity of interest (QoI) is approximated in a basis (dictionary) learned from a training set. The coefficients associated with the approximation of the QoI in the basis are determined by minimizing the misfit with the observations. To obtain a probabilistic estimate of the quantity of interest, a Bayesian approach is employed. The QoI is treated as a random field endowed with a hierarchical prior distribution so that closed-form expressions can be obtained for the posterior distribution. The main contribution of the present work lies in the derivation of a representation basis consistent with the observation chain used to infer the associated coefficients. The resulting dictionary is then tailored to be both observable by the sensors and accurate in approximating the posterior mean. An algorithm for deriving such an observable dictionary is presented. The method is illustrated with the estimation of the velocity field of an open cavity flow from a handful of wall-mounted point sensors. Comparison with standard estimation approaches relying on Principal Component Analysis and K-SVD dictionaries is provided and illustrates the superior performance of the present approach.
机译:本文介绍了一种从一些观测值中有效推断高维分布量的方法。兴趣量(QoI)是根据从训练集中学习到的基础(字典)来估算的。通过最小化与观测值的不匹配度来确定与基础QoI近似值相关的系数。为了获得感兴趣量的概率估计,采用贝叶斯方法。 QoI被视为具有分层先验分布的随机字段,因此可以为后验分布获得封闭形式的表达式。本工作的主要贡献在于派生了与用于推断相关系数的观察链一致的表示基础。然后将生成的字典调整为既可以被传感器观察到,又可以精确地逼近后均值。提出了用于导出这种可观察字典的算法。通过从少数几个壁挂式点传感器估算开腔流的速度场来说明该方法。提供了与依靠主成分分析和K-SVD词典的标准估计方法的比较,并说明了本方法的优越性能。

著录项

  • 来源
  • 作者单位

    LIMSI CNRS UPR 3251, Rue John von Neumann,Campus Univ,Bat 508, F-91405 Orsay, France;

    Ecole Normale Super, SATIE CNRS UMR 8029, 61 Av President Wilson, F-94230 Cachan, France|Univ Grenoble Alpes, IUT1, 151 Rue Papeterie, F-38400 St Martin Dheres, France;

    Ecole Normale Super, SATIE CNRS UMR 8029, 61 Av President Wilson, F-94230 Cachan, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号