首页> 外文会议>International joint conference on artificial intelligence >Self-Organized Neural Learning of Statistical Inference from High-Dimensional Data
【24h】

Self-Organized Neural Learning of Statistical Inference from High-Dimensional Data

机译:基于高维数据的统计推理的自组织神经学习

获取原文

摘要

With information about the world implicitly embedded in complex,high-dimensional neural population responses,the brain must perform some sort of statistical inference on a large scale to form hypotheses about the state of the environment.This ability is,in part,acquired after birth and often with very little feedback to guide learning.This is a very difficult learning problem considering the little information about the meaning of neural responses available at birth.In this paper,we address the question of how the brain might solve this problem: We present an unsupervised artificial neural network algorithm which takes from the self-organizing map (SOM) algorithm the ability to learn a latent variable model from its input.We extend the SOM algorithm so it learns about the distribution of noise in the input and computes probability density functions over the latent variables.The algorithm represents these probability density functions using population codes.This is done with very few assumptions about the distribution of noise.Our simulations indicate that our algorithm can learn to perform similar to a maximum likelihood estimator with the added benefit of requiring no a-priori knowledge about the input and computing not only best hypotheses,but also probabilities for alternatives.
机译:由于将有关世界的信息隐含地嵌入复杂的高维神经人口反应中,因此大脑必须进行大规模的某种统计推断,以形成关于环境状态的假设。这种能力部分是在出生后获得的考虑到在出生时可获得的神经反应的含义方面的信息很少,这是一个非常困难的学习问题。本文解决了大脑如何解决此问题的问题:一种无监督的人工神经网络算法,它利用自组织映射(SOM)算法从其输入中学习潜在变量模型的能力。我们扩展了SOM算法,以便它了解输入中的噪声分布并计算概率密度潜在变量的函数。该算法使用总体代码表示这些概率密度函数。我们的模拟表明,我们的算法可以学习执行与最大似然估计器相似的操作,并且具有不需要输入的先验知识以及不仅计算最佳假设而且还可以计算替代可能性的额外好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号