首页> 外文期刊>Archives of Computational Methods in Engineering >A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems
【24h】

A Comparative Study of Recent Multi-objective Metaheuristics for Solving Constrained Truss Optimisation Problems

机译:近期多目标综合体求解约束桁架优化问题的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Multi-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, success history-based adaptive multi-objective differential evolution, success history-based adaptive multi-objective differential evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolutionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algorithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.
机译:多目标桁架优化是与单客目标案件相比,文献中的研究课题。本文调查解决桁架优化问题时十四新和建立的多目标核心学的比较表现。优化仪包括多目标蚂蚁狮子优化器,多目标蜻蜓算法,多目标蚱蜢优化算法,多目标灰狼优化器,多目标多韵优化,多目标水循环算法,多目标SALP群算法,成功历史的自适应多目标差分演进,基于成功历史的自适应多目标差分演进,鲸闲的分类遗传算法II,基于Real-Code群的杂交,差分演变,差分基于分解的多目标优化,多目标进化算法的进化,兼植物尺寸进化多目标优化算法。分配设计问题以最大限度地减少结构质量和符合性受到应力限制的影响。在文献中发现的八个古典桁架用于建立设计测试问题。然后实施各种优化器以解决问题。赋予全面的比较研究,以批判性地分析该问题区域中所有算法的性能。结果为在桁架优化中解决多重,经常冲突的目标时,对进化多目标优化算法的优点和缺点提供了新的见解。这项工作协助的结果和调查结果不仅可以更好地解决桁架优化问题,而且还为这些问题设计定制算法。

著录项

  • 来源
    《Archives of Computational Methods in Engineering》 |2021年第5期|4031-4047|共17页
  • 作者单位

    Khon Kaen Univ Fac Engn Sustainable Infrastruct Res & Dev Ctr Dept Mech Engn Khon Kaen 40002 Thailand;

    Khon Kaen Univ Fac Engn Sustainable Infrastruct Res & Dev Ctr Dept Mech Engn Khon Kaen 40002 Thailand;

    Khon Kaen Univ Fac Engn Sustainable Infrastruct Res & Dev Ctr Dept Mech Engn Khon Kaen 40002 Thailand;

    Bursa Uludag Univ Dept Automot Engn Bursa Turkey;

    Torrens Univ Australia Ctr Artificial Intelligence Res & Optimisat 90 Bowen Terrace Brisbane Qld 4006 Australia|Yonsei Univ YFL Yonsei Frontier Lab Seoul South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号