首页> 外文期刊>Computers & operations research >A comparative study on multiobjective metaheuristics for solving constrained in-core fuel management optimisation problems
【24h】

A comparative study on multiobjective metaheuristics for solving constrained in-core fuel management optimisation problems

机译:解决约束核燃料管理优化问题的多目标元启发法比较研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the topic of constrained multiobjective in-core fuel management optimisation (MICFMO) using metaheuristics is considered. Several modern and state-of-the-art metaheuristics from different classes, including evolutionary algorithms, local search algorithms, swarm intelligence algorithms, a probabilistic model-based algorithm and a harmony search algorithm, are compared in order to determine which approach is the most suitable in the context of constrained MICFMO. A test suite of 16 optimisation problem instances, based on the SAFARI-1 nuclear research reactor, has been established for the comparative study. The suite is partitioned into three classes, each consisting of problem instances having a different number of objectives, but subject to the same stringent constraint set. The effectiveness of a multiplicative penalty function constraint handling technique is also compared with the constrained-domination technique from the literature. The different optimisation approaches are compared in a nonparametric statistical analysis. The analysis reveals that multiplicative penalty function constraint handling is a competitive alternative to constrained-domination, and seems to be particularly effective in the context of bi-objective optimisation problems. In terms of the metaheuristic solution comparison, it is found that the nondominated sorting genetic algorithm II (NSGA-II), the Pareto ant colony optimisation (P-ACO) algorithm and the multiobjective optimisation using cross-entropy method (MOOCEM) are generally the best-performing metaheuristics across all three problem classes, along with the multiobjective variable neighbourhood search (MOVNS) in the bi-objective problem class. Furthermore, the practical relevance of the metaheuristic results is demonstrated by comparing the solutions thus obtained to the current SAFARI-1 reload configuration design approach. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在本文中,考虑了使用元启发式的约束多目标堆芯燃料管理优化(MICFMO)主题。比较了来自不同类别的几种现代的和最新的元启发式方法,包括进化算法,局部搜索算法,群体智能算法,基于概率模型的算法和和声搜索算法,以确定哪种方法最有效。适用于受约束的MICFMO。建立了一个基于SAFARI-1核研究堆的16个优化问题实例的测试套件,用于比较研究。该套件分为三个类,每个类由具有不同数量目标但受相同严格约束集约束的问题实例组成。还从文献中将乘法惩罚函数约束处理技术的有效性与约束支配技术进行了比较。在非参数统计分析中比较了不同的优化方法。分析表明,乘法惩罚函数约束处理是约束支配的竞争选择,并且在双目标优化问题中似乎特别有效。从元启发式解决方案比较来看,发现非支配排序遗传算法II(NSGA-II),帕累托蚁群优化(P-ACO)算法和使用交叉熵方法的多目标优化(MOOCEM)通常是所有三个问题类别中表现最佳的元启发式方法,以及双目标问题类别中的多目标变量邻域搜索(MOVNS)。此外,通过将如此获得的解决方案与当前的SAFARI-1重载配置设计方法进行比较,证明了元启发式结果的实际意义。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号