首页> 外文期刊>Archives of Computational Methods in Engineering >State-of-the-Art Review of Machine Learning Applications in Constitutive Modeling of Soils
【24h】

State-of-the-Art Review of Machine Learning Applications in Constitutive Modeling of Soils

机译:土壤本构建模中的机器学习应用的最先进综述

获取原文
获取原文并翻译 | 示例

摘要

Machine learning (ML) may provide a new methodology to directly learn from raw data to develop constitutive models for soils by using pure mathematic skills. It has presented success and versatility in cases of simple stress paths due to its strong non-linear mapping capacity without limitations of constitutive formulations. However, current studies on the ML-based constitutive modeling of soils is still very limited. This study comprehensively reviews the application of ML algorithms in the development of constitutive models of soils and compares the performance of different ML algorithms. First, the basic principles of typical ML algorithms used in describing soil behaviors are briefly elaborated. The main characteristics and the limitations of such ML algorithms are summarized and compared. Then, the methodology of developing a ML-based soil model is reviewed from six aspects, such as adopted ML algorithms, data source, framework of the ML-based model, training strategy, generalization ability and application scope. Finally, five new ML-based models are developed using five typical ML algorithms (i.e. BPNN, RBF, LSTM, GRU and BiLSTM that can predict multi outputs together) based on same set of experimental results of sand, and compare each other in terms of the predictive accuracy and generalization ability. Results show the long short-term memory (LSTM) neural network and its variants are most suitable for developing constitutive models. Moreover, some useful suggestions for developing the ML-based soil model are also provided for the community.
机译:机器学习(ML)可以提供新的方法,直接从原始数据中学习,通过使用纯数学技能为土壤制定本结构型模型。由于其强大的非线性映射容量,在简单的应力路径的情况下,在没有本构制品的局限性的情况下,它提出了成功和多功能性。然而,目前对土壤的ML的本构型建模的研究仍然非常有限。本研究全面评估M1算法在土壤本构模型开发中的应用,并比较了不同ML算法的性能。首先,简要阐述了用于描述土壤行为的典型ML算法的基本原理。概括并比较了这种ML算法的主要特征和局限性。然后,从六个方面审查了开发ML的土壤模型的方法,例如采用ML算法,数据源,基于ML的模型,培训策略,泛化能力和应用范围的框架。最后,使用五种典型的ML算法(即BPNN,RBF,LSTM,GRU和BILSTM的三种新的基于ML的模型基于同一组的沙子的实验结果,并以彼此进行比较预测准确性和泛化能力。结果显示了长短期内存(LSTM)神经网络,其变体最适合于开发本构模型。此外,还为社区提供了用于开发ML的土壤模型的一些有用建议。

著录项

  • 来源
    《Archives of Computational Methods in Engineering》 |2021年第5期|3661-3686|共26页
  • 作者单位

    Hong Kong Polytech Univ Dept Civil & Environm Engn Hung Hom Kowloon Hong Kong Peoples R China;

    Hong Kong Polytech Univ Dept Civil & Environm Engn Hung Hom Kowloon Hong Kong Peoples R China;

    Hong Kong Polytech Univ Dept Civil & Environm Engn Hung Hom Kowloon Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号