首页> 外文期刊>Archives of Computational Methods in Engineering >A Study on Recognition of Pre-segmented Handwritten Multi-lingual Characters
【24h】

A Study on Recognition of Pre-segmented Handwritten Multi-lingual Characters

机译:预分段手写多语言字符的识别研究

获取原文
获取原文并翻译 | 示例

摘要

Wide research has been carried out for recognition of handwritten text on various languages that include Assamese, Bangla, English, Gujarati, Hindi, Marathi, Punjabi, Tamil etc. Recognition of multi-lingual text documents is still a challenge in the pattern recognition field. In this paper, a study of various features and classifiers for recognition of pre-segmented multi-lingual characters consisting of English, Hindi and Punjabi has been presented. In feature extraction phase, various techniques, namely, zoning features, diagonal features, horizontal peak extent based features and intersection and open end point based features are considered. In classification phase, three different classifiers, namely, k-NN, Linear-SVM, and MLP are attempted. Different combinations of various features and classifiers have been also performed. For script identification, we have achieved maximum accuracy of 92.89% using a combination of Linear-SVM, k-NN, and MLP classifiers, and for character recognition of English, Hindi and Punjabi, we have achieved a recognition accuracy of 92.18%, 84.67% and 86.79%, respectively.
机译:对于包括阿萨姆语,孟加拉语,英语,古吉拉特语,印地语,马拉地语,旁遮普语,泰米尔语等各种语言的手写文本的识别,已经进行了广泛的研究。在模式识别领域,多语言文本文档的识别仍然是一个挑战。在本文中,对用于识别由英语,印地语和旁遮普语组成的预分段多语言字符的各种特征和分类器进行了研究。在特征提取阶段,考虑了各种技术,即分区特征,对角线特征,基于水平峰值范围的特征以及基于交点和开放端点的特征。在分类阶段,尝试了三种不同的分类器,即k-NN,Linear-SVM和MLP。还已经执行了各种特征和分类器的不同组合。对于脚本识别,结合使用Linear-SVM,k-NN和MLP分类器,我们达到了92.89%的最大准确度;对于英语,印地语和旁遮普语的字符识别,我们的识别准确率达到了92.18%,84.67 %和86.79%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号