首页> 外文期刊>International Journal of Wavelets, Multiresolution and Information Processing >BASIC HANDWRITTEN CHARACTER RECOGNITION FROM MULTI-LINGUAL IMAGE DATASET USING MULTI-RESOLUTION AND MULTI-DIRECTIONAL TRANSFORM
【24h】

BASIC HANDWRITTEN CHARACTER RECOGNITION FROM MULTI-LINGUAL IMAGE DATASET USING MULTI-RESOLUTION AND MULTI-DIRECTIONAL TRANSFORM

机译:基于多分辨率和多方向变换的多语言图像数据集的基本手写字符识别

获取原文
获取原文并翻译 | 示例

摘要

This paper, proposes a novel approach for feature extraction based on the segmentation and morphological alteration of handwritten multi-lingual characters. We explored multi-resolution and multi-directional transforms such as wavelet, curvelet and ridgelet transform to extract classifying features of handwritten multi-lingual images. Evaluating the pros and cons of each multi-resolution algorithm has been discussed and resolved that Curvelet-based features extraction is most promising for multi-lingual character recognition. We have also applied some morphological operation such as thinning and thickening then feature level fusion is performed in order to create robust feature vector for classification. The classification is performed with K-nearest neighbor (K-NN) and support vector machine (SVM) classifier with their relative performance. We experiment with our in-house dataset, compiled in our lab by more than 50 personnel.
机译:本文提出了一种基于手写多语言字符的分割和形态变化的特征提取新方法。我们探索了多分辨率和多方向的变换,例如小波,curvelet和ridgelet变换,以提取手写多语言图像的分类特征。讨论和评估了每种多分辨率算法的优缺点,并解决了基于Curvelet的特征提取最有希望用于多语言字符识别的问题。我们还应用了一些形态学操作,例如细化和增厚,然后执行特征级别融合以创建用于分类的鲁棒特征向量。使用K最近邻(K-NN)和支持向量机(SVM)分类器及其相对性能进行分类。我们对内部数据集进行了实验,该数据集是在我们的实验室中由50多名人员编译而成的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号