首页> 外文期刊>Archives of Computational Methods in Engineering >Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review
【24h】

Soft Computing Techniques for Land Use and Land Cover Monitoring with Multispectral Remote Sensing Images: A Review

机译:利用多光谱遥感图像进行土地利用和土地覆盖监测的软计算技术:综述

获取原文
获取原文并翻译 | 示例

摘要

Multispectral remote sensing images are the primary source in the land use and land cover (LULC) monitoring. This is achieved by LULC classification and LULC change detection. The change detection in LULC includes the detection of water bodies, forest fire, forest degradation, agriculture areas monitoring, etc. Various change detection and LULC classification methods have their own advantages and disadvantages, and no single method is optimal and finds applicability for all cases. This paper summarizes and analyses the various soft computing and feature extraction techniques used for LULC classification and change detection. Based on the average error rate, performances of the different soft computing techniques are evaluated. The broad usage of multispectral remote sensing images, object-based change detection, neural networks and various levels of image fusion methods offer more potential in LULC monitoring.
机译:多光谱遥感图像是土地利用和土地覆被(LULC)监测的主要来源。这可以通过LULC分类和LULC变化检测来实现。 LULC中的变化检测包括水体检测,森林火灾,森林退化,农业地区监测等。各种变化检测和LULC分类方法各有优缺点,没有一种方法是最优的,无法找到适用于所有情况的方法。本文总结并分析了用于LULC分类和变化检测的各种软计算和特征提取技术。基于平均错误率,评估了不同软计算技术的性能。多光谱遥感图像的广泛使用,基于对象的变化检测,神经网络和各种级别的图像融合方法为LULC监控提供了更大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号