...
首页> 外文期刊>Applied Surface Science >Three-dimensional laser-induced holey graphene and its dry release transfer onto Cu foil for high-rate energy storage in lithium-ion batteries
【24h】

Three-dimensional laser-induced holey graphene and its dry release transfer onto Cu foil for high-rate energy storage in lithium-ion batteries

机译:三维激光诱导的多孔石墨烯及其干释放转移到Cu箔上的锂离子电池中的高速储能

获取原文
获取原文并翻译 | 示例
           

摘要

Next-generation batteries require high-rate energy storage capabilities owing to the advent of fast charging electrical applications. Energy storage materials that can regulate the capacity even at high current densities must be developed. However, this is challenging owing to the limited ion transport kinetics inherent in thick electrodes. The sluggish ion transport can be mitigated by adopting nanomaterials with high specific surface areas or fabricating electrodes with structural alignment. Nevertheless, the rearrangement of materials in electrodes that facilitate fast charging with external forces and additives does not provide a satisfactory ion transport rate. In this study, for realizing a high-rate anode material, facet-controlled three-dimensional holey graphene is fabricated by transferring laser-induced graphene (LIG) to a copper tape in dry condition. This electrode exhibits a consistent capacity of similar to 114 mAh g(-1) at an increased mass loading of 3 mg cm(-2) and a high current density of 20 A g(-1), implying that 95% capacity can be charged within 3 min. This exceptionally high rate is attributed to the unique structure of the transferred LIG (three dimensionally aligned macro/meso-porous LIG flakes featuring preferential surface facet directions). This fabrication is compatible with the existing manufacturing process for anode materials and can be applied to other energy materials.
机译:由于快速充电电气应用,下一代电池需要高速储能功能。必须开发即使在高电流密度下调节容量的储能材料。然而,由于厚电极中固有的有限的离子输送动力学,这是挑战。可以通过采用具有高比表面积或具有结构对准的制造电极的纳米材料来减轻缓慢的离子传输。然而,促进与外力和添加剂快速充电的电极中材料的重新排列不提供令人满意的离子运输速率。在该研究中,为了实现高速阳极材料,通过将激光诱导的石墨烯(LIG)转移到干燥条件下的铜带来制造小相控制的三维顶气石墨烯。该电极表现出相对于114mAhg(-1)的一致能力,其质量增加3mg cm(-2),并且高电流密度为20ag(-1),这意味着95%的容量可以是3分钟内收费。这种极高的速率归因于转移的Lig的独特结构(三维对齐的宏/间隔多孔Lig剥落具有优先表面小孔方向)。该制造与阳极材料的现有制造方法兼容,并且可以应用于其他能量材料。

著录项

  • 来源
    《Applied Surface Science》 |2021年第30期|150416.1-150416.8|共8页
  • 作者单位

    Korea Inst Machinery & Mat KIMM Dept Appl Nanomech 156 Gajeongbuk Ro Daejeon 34103 South Korea|Korea Univ Sci & Technol UST Dept Nanomechatron 217 Gajeongbuk Ro Daejeon 34113 South Korea;

    Chung Ang Univ Sch Mech Engn Soft Energy Syst & Laser Applicat Lab Seoul 06974 South Korea;

    Korea Inst Machinery & Mat KIMM Dept Appl Nanomech 156 Gajeongbuk Ro Daejeon 34103 South Korea|Korea Univ Sci & Technol UST Dept Nanomechatron 217 Gajeongbuk Ro Daejeon 34113 South Korea;

    Chung Ang Univ Sch Mech Engn Soft Energy Syst & Laser Applicat Lab Seoul 06974 South Korea|Chung Ang Univ Dept Intelligent Energy & Ind Seoul 06974 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Laser induced graphene; Dry release transfer; Lithium-ion batteries; High-rate capabilities; 3D-holey graphene;

    机译:激光诱导的石墨烯;干式释放转移;锂离子电池;高速度能力;3D-HOLY石墨烯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号