首页> 外文期刊>ACS applied materials & interfaces >Three-Dimensional SiC/Holey-Graphene/Holey-MnO2 Architectures for Flexible Energy Storage with Superior Power and Energy Densities
【24h】

Three-Dimensional SiC/Holey-Graphene/Holey-MnO2 Architectures for Flexible Energy Storage with Superior Power and Energy Densities

机译:具有卓越功率和能量密度的灵活储能的三维SiC / HOLY-GRAPHENE / HONY-MNO2架构

获取原文
获取原文并翻译 | 示例
           

摘要

Although nanostructured materials have recently enabled a dramatic improvement of the current energy-storage units in portable electronics with enhanced functionality, it is still challenging to provide a cost-efficient solution to attain the ultrahigh energy and power densities of supercapacitors (SCs) since nearly arbitrary electrodes are limited to the thinner porous structure with de facto rather low mass loading (similar to 1 mg cm(-2)) because of the huge limitations of pronounced impaired ion transport in subnanometer pores in thicker compact electrodes. In this contribution, we report the fabrication of a macro/mesoporous hybrid hierarchical nanocomposite SiC/holey-graphene/holey-MnO2 (SiC/HG/h-MnO2 ) with tailored porosity by knitting together the quasi-aligned single-crystalline doped 3C-SiC nanowire array and in situ surface-reduced holey graphene framework into a three-dimensional quasi-ordered structure, which enables the mass growth of ultrathin h-MnO2 nanosheets at approximately practical levels of mass loading. The produced synergistically favorable interconnected porous architecture allows for the highly efficient electron transfer and rapid ion transport up to interior surfaces of the network. Remarkably, the all-solid-state flexible asymmetric supercapacitors (ASCs) made with SiC/HG/h-MnO, and SiC/graphitic carbon (GC) nanoarrays are mechanically robust and show a high areal capacity (0.32 mWh cm(-2)) and a high rate capability (280 mW cm(-2)) at ultrahigh mass loading (6.5 mg cm(-2)), much higher than most of previous superior SCs in aqueous or gelled electrolytes and thus offer an entirely new prototype of textile-based ASCs, which represents a critical step toward practical applications for various portable electronics.
机译:尽管纳米结构材料最近能够在便携式电子设备中具有增强功能的当前能量存储单元的显着改善,但是由于几乎任意,提供了一种成本效益的解决方案,以获得高度的超高能量和功率密度电极仅限于较薄的多孔结构,其具有相当低的质量负载(类似于1mgcm(-2)),因为在较厚的紧凑电极中的亚腔计孔中的发音受损离子输送的巨大局限性。在这一贡献中,我们通过编织在一起,通过编织在一起,报告宏观/介孔混合分层纳米复合SiC / HONOMOCHES / HOLY-MNO2(SiC / HG / H-MNO2),通过针对掺杂的准对准的单晶掺杂3C- SiC纳米线阵列和原位表面减小的HOLENY石墨烯框架成三维准有序结构,其能够在大致实际的质量负荷水平下进行超薄H-MNO2纳米片的质量生长。所产生的协同良好的互联多孔结构允许高效的电子传递和快速离子传输到网络的内表面。值得注意的是,用SiC / Hg / H-MnO制造的全固态柔性不对称超级电容器(ASCS)和SiC /石墨碳(GC)纳米载体是机械鲁棒的,并且显示出高的面积容量(0.32米(-2) )高速率(280mW cm(-2))在超高质量荷载(6.5mg cm(-2)),远高于含水或凝胶电解质中的最优越的SCs,因此提供了完全新的原型基于纺织的ASC,这代表了朝着各种便携式电子设备的实际应用的关键步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号