首页> 外文期刊>Applied Surface Science >Interfacial electrical and chemical properties of deposited SiO_2 layers in lateral implanted 4H-SiC MOSFETs subjected to different nitridations
【24h】

Interfacial electrical and chemical properties of deposited SiO_2 layers in lateral implanted 4H-SiC MOSFETs subjected to different nitridations

机译:横向植入的4H-SiC MOSFET中沉积SiO_2层的界面电气和化学性质进行了不同的氮化

获取原文
获取原文并翻译 | 示例

摘要

In this paper, SiO2 layers deposited on 4H-SiC and subjected to different post deposition annealing (PDA) in NO and N2O were studied to identify the key factors influencing the channel mobility and threshold voltage stability in lateral implanted 4H-SiC MOSFETs. In particular, PDA in NO gave a higher channel mobility (55 cm(2)V(-1)s(-1)) than PDA in N2O (20 cm(2)V(-1)s(-1)), and the subthreshold behavior of the devices confirmed a lower total amount of interface states for the NO case. On the other hand, cyclic gate bias stress measurements allowed to separate the contributions of interface states (Nit) both on the upper and bottom parts of the 4H-SiC band gap and near interface oxide traps (NIOTs) in the two oxides. In particular, it was found that NO annealing reduced the total density of charges trapped at the interface states down to 3 x 10(11) cm(-2) and those trapped inside the oxide down to 1 x 10(11) cm(-2). Electron energy loss spectroscopy demonstrated that the reduction of these traps in the NO annealed sample is due to the lower amounts of sub-stoichiometric silicon oxide (similar to 1nm) and carbon-related defects (1nm) at the interface, respectively. This correlation represents a further step in the comprehension of the physics of the SiO2/4H-SiC interface explaining the mobility and threshold voltage behavior of 4H-SiC MOSFETs. Furthermore, the experimental results indicate that an accurate control of SiC re-oxidation during post-deposition annealing in MOSFET technology is a key factor to improve the mobility and threshold voltage stability.
机译:在本文中,研究了沉积在4H-SiC上并进行不同的沉积后退火(PDA)的SiO 2层,没有研究,以确定影响横向植入的4H-SiC MOSFET中的频道移动性和阈值电压稳定性的关键因素。特别地,PDA在N 2 O中的PDA(20cm(2)V(-1)S(-1)),而且设备的亚阈值行为确认了较低的界面状态,无需案例。另一方面,循环栅极偏置应力测量允许将界面状态(NIT)的贡献分离在4H-SiC带隙的上部和底部和两个氧化物中的近邻接氧化物疏水阀(裸耳)上。特别地,发现没有退火将捕获在界面状态下的电荷的总密度降低至3×10(11)厘米(-2),捕获在氧化物内部的那些,下降至1×10(11)cm( - 2)。电子能量损失光谱证明,在界面中,不产生退火样品中的这些陷阱的降低分别是由于界面处的较低量的亚化学计量氧化硅(类似于1nm)和碳相关的缺陷(& 1nm)。该相关性表示用于理解SiO2 / 4H-SIC界面的物理学的理解,说明了4H-SiC MOSFET的迁移率和阈值电压行为的物理学。此外,实验结果表明MOSFET技术后沉积后退火期间SiC再氧化的精确控制是改善迁移率和阈值电压稳定性的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号