首页> 外文期刊>Applied Surface Science >Effect of rare metal element interfacial modulation in graphene/Cu composite with high strength, high ductility and good electrical conductivity
【24h】

Effect of rare metal element interfacial modulation in graphene/Cu composite with high strength, high ductility and good electrical conductivity

机译:稀有金属元素界面调节在石墨烯/ Cu复合材料中具有高强度,高延展性和良良电导率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We investigated the atomic and electronic structures and interface interaction of graphene/copper interface with rare earth elements (REEs) modified using density functional theory. The effect of interface interaction enhancement induced by interfacial modification is revealed, which results in significant improvement of the mechanical properties of graphene/copper. Thereby, we applied a novel strategy to incorporate Y element at the interface of graphene nanoplatelets/copper (GNPs/Cu) to improve mechanical properties of composites. Tensile tests demonstrated that the yield strength of composites increases by 95.4% via very low fraction (0.2 wt%) of Y modification with elongation comparable to Cu, which exhibits excellent matched relationship between strength and ductility. Simultaneously, the composite equips with improved electrical conductivity compared with that of the matrix. We illustrated the strengthening effects of REEs modification at the interface that give rise to the effective load transfer, in consistence with the theoretical predication. Furthermore, the GNPs/Cu composites with the interface Ce/Sc elements modified were also fabricated, both of which showed excellent strengthductility combination. Therefore, the universality of the present method is verified for the preparation of metal matrix composites with excellent mechanical properties through interface modification with REEs.
机译:我们调查了石墨烯/铜界面与使用密度函数理论改进的稀土元素(REES)的原子和电子结构和界面相互作用。揭示了界面修饰诱导的界面相互作用增强的影响,这导致石墨烯/铜的机械性能显着改善。因此,我们应用了一种新的策略来掺入石墨烯纳米孔/铜(GNPS / Cu)界面处的Y元素,以改善复合材料的机械性能。拉伸试验证明,复合材料的屈服强度通过非常低的率(0.2wt%)的Y改性增加了95.4%,伸长率与Cu相当,其在强度和延展性之间表现出优异的匹配关系。同时,与矩阵相比,复合材料具有改善的电导率。我们说明了REES改性在界面中的强化效果,从而与理论预测一致产生有效负载转移。此外,还制造了具有改性界面CE / SC元件的GNPS / Cu复合材料,两者都显示出优异的强度稳定性组合。因此,通过用REES的界面改性,验证本发明方法的普遍性以制备具有优异的机械性能的金属基质复合材料。

著录项

  • 来源
    《Applied Surface Science》 |2020年第15期|147489.1-147489.13|共13页
  • 作者单位

    Tianjin Univ Sch Mat Sci & Engn Tianjin 300350 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Tianjin 300350 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Tianjin 300350 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Tianjin 300350 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Tianjin 300350 Peoples R China|Collaborat Innovat Ctr Chem Sci & Engn Tianjin 300072 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Tianjin 300350 Peoples R China;

    Tianjin Univ Sch Mat Sci & Engn Tianjin 300350 Peoples R China|Collaborat Innovat Ctr Chem Sci & Engn Tianjin 300072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    First principles calculations; Metal matrix composites (MMCs); Graphene; In-situ; Interface; Rare earth element;

    机译:第一原理计算;金属基质复合材料(MMC);石墨烯;原位;界面;稀土元素;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号