首页> 外文学位 >The influence of microstructure on the strength and electrical conductivity of directionally-solidified Cu-Ag microcomposites.
【24h】

The influence of microstructure on the strength and electrical conductivity of directionally-solidified Cu-Ag microcomposites.

机译:微观结构对定向凝固Cu-Ag微复合材料强度和电导率的影响。

获取原文
获取原文并翻译 | 示例

摘要

An analysis of the interrelationships between microstructure and both mechanical and electrical properties in deformation-processed Cu-Ag alloys is presented. The effects of microstructure on the strength, electrical conductivity and strength-conductivity combinations were evaluated to provide guidelines for property optimization. Different microstructures were prepared by varying (a) the growth conditions during directional solidification, (b) alloy composition, (c) deformation level, (d) lamellar orientation and (e) thermomechanical processing schedule. The increased interfacial area of the eutectic structure is shown to result in a more rapid decrease in conductivity during deformation when compared with those alloys with considerable volume fractions of the primary phase. As the initial interlamellar spacing becomes smaller, the hardening rate is not changed while the conductivity of the eutectic alloy decreases more rapidly with deformation. Both lamellar and rod-like eutectics were investigated and the resulting structures and properties after deformation were considerably different. The dominant factors determining the value of the strength-conductivity factor (SCF), where the SCF is the ratio of the ultimate strength to the conductivity are the volume fraction, interlamellar spacing, morphology and orientation of the Cu-Ag eutectic.
机译:提出了一种变形加工的Cu-Ag合金的微观结构与机械性能和电性能之间的相互关系的分析。评估了微观结构对强度,电导率和强度-电导率组合的影响,为性能优化提供了指导。通过改变(a)定向凝固过程中的生长条件,(b)合金成分,(c)变形水平,(d)层状取向和(e)热机械加工程序来制备不同的微观结构。与那些体积分数主要为第一相的合金相比,共晶结构增加的界面面积会导致变形过程中电导率的更快下降。随着初始层间间距变小,硬化速率不变,而共晶合金的电导率随着变形而更快地降低。对层状和棒状共晶进行了研究,变形后所得的结构和性能差异很大。决定强度-导电率(SCF)值的主要因素,其中SCF是极限强度与导电率的比率是Cu-Ag共晶的体积分数,层间间距,形态和取向。

著录项

  • 作者

    Sohn, Keun Yong.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:48:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号