首页> 外文期刊>Applied Surface Science >In-situ fabrication of MoO_3 nanobelts decorated with MoO_2 nanoparticles and their enhanced photocatalytic performance
【24h】

In-situ fabrication of MoO_3 nanobelts decorated with MoO_2 nanoparticles and their enhanced photocatalytic performance

机译:原位制造MOO_3纳米座,用MOO_2纳米粒子装饰及其增强的光催化性能

获取原文
获取原文并翻译 | 示例

摘要

Photocatalysis has been rapidly developed as a sustainable technology to decompose contaminants by using photogenerated carriers excited through light irradiation. Electrons for molybdenum trioxide (MoO3) semiconductor with wide band gap can be easily transferred to its conduction band via dye sensitization effect under visible light. However, MoO3 still suffers from poor photocatalytic ability for organic dyes due to the low energy level of the conduction band and the insufficient utilization of the induced electrons. In this study, molybdenum dioxide (MoO2) nanoparticles were decorated on the surface of MoO3 nanobelts without requiring an additional Mo source by using a simple in-situ hydrothermal method. In the reaction process, the partial MoO3 itself was reduced to metallic MoO2 nanoparticles, and the resulting intimate interface between MoO2 and MoO3 could accelerate the transfer of dye sensitization-induced electrons. The as-prepared MoO2/MoO3 nanocomposites exhibited extremely enhanced visible light photocatalytic activity for decomposing rhodamine B (RhB) with the assistance of H2O2. The mechanism for high-efficiency degradation was analyzed and explored by conducting theoretical calculations and designing further experiments. The high-efficiency degradation might be due to the synergistic effect caused by the well-matched energy band structure between dyes and MoO3, and the metallic MoO2 nanoparticles, which can accelerate the production of hydroxyl radical (center dot OH) from H2O2. center dot OH is a dominant reactive species for the degradation of RhB under visible light irradiation.
机译:光催化已被迅速开发为可持续技术,以通过使用光辐射激发的光生载体来分解污染物。具有宽带间隙的三氧化钼(MOO3)半导体的电子通过可见光下通过染料敏化效果容易地转移到其导通带。然而,由于导通带的低能量水平和诱导的电子的不充分利用,MOO3仍然具有差的有机染料的光催化能力。在该研究中,二氧化钼(MOO2)纳米颗粒在MOO3纳米座的表面上装饰,而不需要使用简单的原位水热法测定额外的MO源。在反应过程中,部分MOO3本身减少到金属MOO2纳米颗粒,并且MOO2和MOO3之间的所得紧密界面可以加速染料敏化诱导的电子的转移。 AS制备的MOO2 / MOO3纳米复合材料具有极其增强的可见光光催化活性,用于在H2O2的辅助下分解罗丹明B(RHB)。通过进行理论计算和设计进一步的实验,分析和探索了高效降解的机制。高效降解可能是由于染料和MOO3之间匹配的能带结构引起的协同效应,以及金属MOO2纳米颗粒,其可以从H2O2加速羟基自由基(中心点OH)的产生。中心点OH是一种显着的反应性,用于在可见光照射下rhb降解的。

著录项

  • 来源
    《Applied Surface Science》 |2019年第30期|427-437|共11页
  • 作者单位

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China|Nanjing Univ Aeronaut & Astronaut State Key Lab Mech & Control Mech Struct Nanjing 210016 Jiangsu Peoples R China;

    Suzhou Univ Sci & Technol Lab Environm Funct Mat Suzhou 215009 Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China|Nanjing Univ Posts & Telecommun Inst Adv Mat Nanjing 210003 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut State Key Lab Mech & Control Mech Struct Nanjing 210016 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Dept Mat Sci & Technol Nanjing 211106 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    In-situ hydrothermal method; MoO2/MoO3 nanocomposites; Photocatalytic activity; Detailed mechanism;

    机译:原位水热法;MOO2 / MOO3纳米复合材料;光催化活性;详细机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号