首页> 外文期刊>Applied Surface Science >In-situ fabrication of MoO_3 nanobelts decorated with MoO_2 nanoparticles and their enhanced photocatalytic performance
【24h】

In-situ fabrication of MoO_3 nanobelts decorated with MoO_2 nanoparticles and their enhanced photocatalytic performance

机译:MoO_2纳米粒子修饰的MoO_3纳米带的原位制备及其增强的光催化性能

获取原文
获取原文并翻译 | 示例

摘要

Photocatalysis has been rapidly developed as a sustainable technology to decompose contaminants by using photogenerated carriers excited through light irradiation. Electrons for molybdenum trioxide (MoO3) semiconductor with wide band gap can be easily transferred to its conduction band via dye sensitization effect under visible light. However, MoO3 still suffers from poor photocatalytic ability for organic dyes due to the low energy level of the conduction band and the insufficient utilization of the induced electrons. In this study, molybdenum dioxide (MoO2) nanoparticles were decorated on the surface of MoO3 nanobelts without requiring an additional Mo source by using a simple in-situ hydrothermal method. In the reaction process, the partial MoO3 itself was reduced to metallic MoO2 nanoparticles, and the resulting intimate interface between MoO2 and MoO3 could accelerate the transfer of dye sensitization-induced electrons. The as-prepared MoO2/MoO3 nanocomposites exhibited extremely enhanced visible light photocatalytic activity for decomposing rhodamine B (RhB) with the assistance of H2O2. The mechanism for high-efficiency degradation was analyzed and explored by conducting theoretical calculations and designing further experiments. The high-efficiency degradation might be due to the synergistic effect caused by the well-matched energy band structure between dyes and MoO3, and the metallic MoO2 nanoparticles, which can accelerate the production of hydroxyl radical (center dot OH) from H2O2. center dot OH is a dominant reactive species for the degradation of RhB under visible light irradiation.
机译:通过使用通过光照射激发的光生载流子,光催化已迅速发展成为一种可持续的技术,以分解污染物。具有宽带隙的三氧化钼(MoO3)半导体的电子可以在可见光下通过染料敏化作用轻易地转移到其导带。但是,由于导带的能级低和感应电子的利用不足,MoO3仍然对有机染料具有较弱的光催化能力。在这项研究中,通过使用简单的原位水热方法,无需额外的钼源就可以在MoO3纳米带的表面装饰二氧化钼(MoO2)纳米颗粒。在反应过程中,部分MoO3本身被还原为金属MoO2纳米颗粒,并且MoO2和MoO3之间紧密的界面可以加速染料敏化诱导的电子的转移。所制备的MoO2 / MoO3纳米复合材料在H2O2的帮助下分解罗丹明B(RhB)表现出极大的可见光光催化活性。通过进行理论计算和设计进一步的实验,分析和探索了高效降解的机理。高效降解可能是由于染料与MoO3之间的能带结构和金属MoO2纳米颗粒之间的匹配良好,从而产生了协同效应,从而加速了H2O2生成羟基自由基(中心点OH)的过程。中心点OH是可见光照射下RhB降解的主要反应物种。

著录项

  • 来源
    《Applied Surface Science》 |2019年第30期|427-437|共11页
  • 作者单位

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China|Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China;

    Suzhou Univ Sci & Technol, Lab Environm Funct Mat, Suzhou 215009, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China|Nanjing Univ Posts & Telecommun, Inst Adv Mat, Nanjing 210003, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, Dept Mat Sci & Technol, Nanjing 211106, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    In-situ hydrothermal method; MoO2/MoO3 nanocomposites; Photocatalytic activity; Detailed mechanism;

    机译:原位水热法MoO2 / MoO3纳米复合材料光催化活性详细机理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号