首页> 外文期刊>Applied Surface Science >Hydrogen-bonding power interfacial load transfer of carbon fabric/polypyrrole composite pseudosupercapacitor electrode with improved electrochemical stability
【24h】

Hydrogen-bonding power interfacial load transfer of carbon fabric/polypyrrole composite pseudosupercapacitor electrode with improved electrochemical stability

机译:电化学稳定性得到改善的碳纤维布/聚吡咯复合拟超级电容器电极的氢键功率界面载荷转移

获取原文
获取原文并翻译 | 示例

摘要

The design of a strong interface interaction is a critical issue to improve the electrochemical stability of polypyrrole (PPy) composite electrodes. In the natural world, hydrogen bond that powers the load transfer can be observed in spider silk. The challenges are to achieve interfacial hydrogen bond interaction to stiff the PPy to help the effective load transfer and alleviate the swelling/shrinkage of PPy chains. Here, a composite electrode was prepared by pyrrole (Py) vapor deposition on the air-plasma-activated carbon fabric (PCF) surface. The X-ray photoelectron spectroscopy and fourier transformed infrared spectroscopy results showed that the -COOH groups appearing on the PCF and hydrogen bonds can be formed on the interface of PCF/PPy. Interfacial shear strength (IFSS) and scanning electronic microscope determined hydrogen bond on the interface of PCF/PPy enhance the adhesion and power the load transfer process from PPy to carbon fiber. These interfacial hydrogen bonds severed as adhesion points helped the load transfer effectively to the substrate and decreased the contact resistance, preventing the damage of PPy chains and improving electrochemical performances of PCF/PPy as the electrode for pseudosupercapacitor. The PCF/PPy supercapacitor showed excellent cycling stability (93% capacitance retention after 4000 cycles), while CF/PPy showed poor cycling stability (74% after 4000 cycles). The idea of hydrogen bond powered electrochemical stability can be of reference for the researchers to improve the cycling stability of other conducive polymers that are widely used in high-performance supercapacitor.
机译:强界面相互作用的设计是提高聚吡咯(PPy)复合电极的电化学稳定性的关键问题。在自然界中,可以在蜘蛛丝中观察到推动载荷传递的氢键。面临的挑战是实现界面氢键相互作用以增强PPy的刚性,以帮助有效地转移载荷并减轻PPy链的溶胀/收缩。在此,通过吡咯(Py)气相沉积在空气等离子活化碳织物(PCF)表面上制备复合电极。 X射线光电子能谱和傅里叶变换红外光谱结果表明,在PCF / PPy的界面上可以形成PCF上出现的-COOH基团和氢键。界面剪切强度(IFSS)和扫描电子显微镜确定PCF / PPy界面上的氢键可增强粘合力,并推动从PPy到碳纤维的负载转移过程。这些作为粘合点的界面氢键被切断,有助于负载有效地转移到基底上,并降低了接触电阻,防止了PPy链的损坏,并改善了PCF / PPy作为拟超级电容器电极的电化学性能。 PCF / PPy超级电容器表现出出色的循环稳定性(4000次循环后93%的电容保持率),而CF / PPy表现出较差的循环稳定性(4000次循环后74%)。氢键驱动的电化学稳定性的概念可为研究人员改善在高性能超级电容器中广泛使用的其他导电聚合物的循环稳定性提供参考。

著录项

  • 来源
    《Applied Surface Science》 |2019年第15期|783-791|共9页
  • 作者单位

    Tianjin Polytech Univ, Sch Mat Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China;

    Tianjin Polytech Univ, Sch Text, Tianjin 300387, Peoples R China;

    Tianjin Polytech Univ, Sch Mat Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China;

    Tianjin Polytech Univ, Sch Text, Tianjin 300387, Peoples R China;

    Tianjin Polytech Univ, Sch Text, Tianjin 300387, Peoples R China;

    Tianjin Polytech Univ, Sch Text, Tianjin 300387, Peoples R China|Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Polypyrrole; Carbon fiber; Supercapacitor; Interfacial property; Cycling stability;

    机译:聚吡咯;碳纤维;超级电容器;界面性质;循环稳定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号