首页> 外文期刊>Applied Surface Science >Droplets impact on textured surfaces: Mesoscopic simulation of spreading dynamics
【24h】

Droplets impact on textured surfaces: Mesoscopic simulation of spreading dynamics

机译:液滴对纹理表面的影响:扩散动力学的介观模拟

获取原文
获取原文并翻译 | 示例

摘要

Superhydrophobic surfaces have attracted much attention due to their excellent water-repellent property. In the present study, droplets in the ideal Cassie state were focused on, and a particle-based numerical method, many-body dissipative particle dynamics, was employed to explore the mechanism of droplets impact on textured surfaces. A solid-fluid interaction with three linear weight functions was used to generate different wettability and a simple but efficient method was introduced to compute the contact angle. The simulated results show that the static contact angle is in good agreement with the Cassie-Baxter formula for smaller os and Fa, but more deviation will be produced for larger os and Fa, and it is related to the fact that the Cassie-Baxter theory does not consider the contact angle hysteresis effect in their formula. Furthermore, high impact velocity can induce large contact angle hysteresis on textured surfaces with larger os and Fa. The typical time-based evolutions of the spreading diameter were simulated, and they were analyzed from an energy transformation viewpoint. These results also show that the dynamical properties of droplet, such as rebounding or pinning, contact time and maximum spreading diameters, largely depend on the comprehensive effects of the material wettability, fraction of the pillars and impact velocities of the droplets. (C) 2014 Elsevier B.V. All rights reserved.
机译:超疏水表面由于其优异的拒水性而备受关注。在本研究中,重点研究了理想Cassie状态下的液滴,并采用基于粒子的数值方法(多体耗散粒子动力学)来探索液滴撞击纹理表面的机制。使用具有三个线性权重函数的固-液相互作用产生不同的润湿性,并引入一种简单而有效的方法来计算接触角。仿真结果表明,对于较小的os和Fa,静态接触角与Cassie-Baxter公式吻合良好,但是对于较大的os和Fa,静态接触角会产生更大的偏差,这与Cassie-Baxter理论有关在其公式中未考虑接触角磁滞效应。此外,高冲击速度会在os和Fa较大的纹理表面上引起较大的接触角滞后。模拟了典型的基于时间的扩径直径演变,并从能量转换的角度对其进行了分析。这些结果还表明,液滴的动力学特性,例如回弹或钉扎,接触时间和最大铺展直径,在很大程度上取决于材料的润湿性,支柱的比例和液滴的冲击速度的综合影响。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号