首页> 外文期刊>Applied Surface Science >Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces
【24h】

Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces

机译:在金属平面和圆柱内表面上制备稳定超疏水性的​​分层结构

获取原文
获取原文并翻译 | 示例

摘要

Recently, the construction of stable superhydrophobicity on metallic wetting surfaces has gained increasing attention due to its potential wide applications. In this paper, we propose an economic fabricating method, which not only is suitable for metallic planar surfaces, but also could be applied onto cylindrical inner surfaces. It mainly involves two steps: etching micro-concaves by a movable mask electrochemical micromachining (EMM) technique and fabricating nanopillars of ZnO by a hydrothermal method. Then the influences of surface morphology on the static and dynamic behaviors of water droplets are investigated. The energy loss during impact on the surfaces is quantified in terms of the restitution coefficient for droplets bouncing off the surfaces. For hierarchical structures with excellent superhydrophobicity (contact angle ≈180° and sliding angle ≤1°), the droplet bounces off the surface several times, superior to the droplet's response on single nanopillars (contact angle ≈165.8° and sliding angle ≈6.29°) where droplet bounces off only for limited a number of times, and even far better than the dynamics of a liquid droplet impinging on microstructures (contact angle ≈132.1° and sliding angle >90°) where droplet does not rebound and remains pinned. The highest elasticity is obtained on the hierarchical surface, where the restitution coefficient can be as large as 0.94. The fabricating method is then applied onto the cylindrical inner surface and the wetting behavior is confirmed to be consistent with the planar surface. This method, which can be generalized to any kind of solid electroconductive metal or other surfaces with different shapes, could find wide practical applications in self-cleaning surfaces, chemical industry, microfluidic devices, mechanical engineering and aviation.
机译:近来,由于其潜在的广泛应用,在金属润湿表面上构造稳定的超疏水性已引起越来越多的关注。在本文中,我们提出了一种经济的制造方法,该方法不仅适用于金属平面表面,而且可以应用于圆柱形内表面。它主要包括两个步骤:通过可移动掩模电化学微加工(EMM)技术蚀刻微凹,以及通过水热法制造ZnO纳米柱。然后研究了表面形态对水滴静态和动态行为的影响。根据从表面弹起的液滴的恢复系数来量化冲击表面期间的能量损失。对于具有超疏水性的​​分层结构(接触角≈180°和滑动角≤1°),液滴会从表面弹回数次,优于液滴在单个纳米柱上的响应(接触角≈165.8°和滑动角≈6.29°)在这种情况下,液滴仅会反弹几次,甚至远远超过撞击到微结构(接触角≈132.1°且滑动角> 90°)的液滴动力学,液滴不反弹并保持固定。在分层表面上获得最高的弹性,其中恢复系数可以高达0.94。然后将制造方法应用于圆柱形内表面,并确认润湿行为与平面一致。该方法可以推广到任何种类的固体导电金属或其他具有不同形状的表面,可以在自清洁表面,化学工业,微流体设备,机械工程和航空领域找到广泛的实际应用。

著录项

  • 来源
    《Applied Surface Science》 |2015年第15期|151-159|共9页
  • 作者单位

    State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, China,College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;

    State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, China;

    State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, China;

    School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China;

    College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;

    College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;

    State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710054, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Superhydrophobic; Electrochemical micromachining; ZnO; Droplet bouncing; Cylindrical inner surface;

    机译:超疏水电化学微加工;氧化锌;水滴弹跳;圆柱内表面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号