首页> 外文期刊>Applied Surface Science >Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure
【24h】

Regeneration of LOHC dehydrogenation catalysts: In-situ IR spectroscopy on single crystals, model catalysts, and real catalysts from UHV to near ambient pressure

机译:LOHC脱氢催化剂的再生:从UHV到接近环境压力的单晶,模型催化剂和实际催化剂的原位红外光谱

获取原文
获取原文并翻译 | 示例

摘要

The Liquid Organic Hydrogen Carrier (LOHC) concept offers an efficient route to store hydrogen using organic compounds that are reversibly hydrogenated and dehydrogenated. One important challenge towards application of the LOHC technology at a larger scale is to minimize degradation of Pt-based dehydrogenation catalysts during long-term operation. Herein, we investigate the regeneration of Pt/alumina catalysts poisoned by LOHC degradation. We combine ultrahigh vacuum (UHV) studies on Pt(111), investigations on well-defined Pt/Al2O3 model catalysts, and near-ambient pressure (NAP) measurements on real core-shell Pt/Al2O3 catalyst pellets. The catalysts were purposely poisoned by reaction with the LOHC perhydro-dibenzyltoluene (H18-MSH) and with dicyclohexylmethane (DCHM) as a simpler model compound. We focus on oxidative regeneration under conditions that may be applied in real dehydrogenation reactors. The degree of poisoning and regeneration under oxidative reaction conditions was quantified using CO as a probe molecule and measured by infrared reflection-absorption spectroscopy (IRAS) and diffuse reflectance Fourier transform IR spectroscopy (DRIFTS) for planar model systems and real catalysts, respectively. We find that regeneration strongly depends on the composition of the catalyst surface. While the clean surface of a poisoned Pt(111) single crystal is fully restored upon thermal treatment in oxygen up to 700 K, contaminated Pt/Al2O3 model catalyst and core-shell pellet were only partially restored under the applied reaction conditions. Whereas partial regeneration on facet-like sites on supported catalysts is more facile than on Pt(111), carbonaceous deposits adsorbed at low-coordinated defect sites impede full regeneration of the Pt/Al2O3 catalysts. (C) 2015 Elsevier B.V. All rights reserved.
机译:液态有机氢载体(LOHC)概念为使用可逆氢化和脱氢的有机化合物提供了一种储存氢的有效途径。大规模应用LOHC技术的一个重要挑战是在长期运行过程中最大程度地减少基于Pt的脱氢催化剂的降解。在本文中,我们研究了LOHC降解中毒的Pt /氧化铝催化剂的再生。我们结合了对Pt(111)的超高真空(UHV)研究,对定义明确的Pt / Al2O3模型催化剂的研究以及对实际核-壳Pt / Al2O3催化剂颗粒的近环境压力(NAP)测量。通过与LOHC过氢二苄基甲苯(H18-MSH)和作为更简单模型化合物的二环己基甲烷(DCHM)反应,有意中毒了催化剂。我们专注于在实际脱氢反应器中可能应用的条件下的氧化再生。以CO为探针分子对氧化反应条件下的中毒和再生程度进行了定量,并分别通过了平面模型系统和实际催化剂的红外反射吸收光谱(IRAS)和漫反射傅里叶变换红外光谱(DRIFTS)进行了测量。我们发现再生在很大程度上取决于催化剂表面的组成。尽管在高达700 K的氧气中进行热处理后,有毒的Pt(111)单晶的清洁表面可以完全恢复,但在所应用的反应条件下,受污染的Pt / Al2O3模型催化剂和核-壳颗粒只能部分恢复。尽管在负载型催化剂上的小面状位点上的部分再生比在Pt(111)上更容易,但是在低配位缺陷位点上吸附的碳质沉积物阻碍了Pt / Al2O3催化剂的完全再生。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号