首页> 美国卫生研究院文献>Springer Open Choice >Surface Spectroscopy on UHV-Grown and Technological Ni–ZrO2 Reforming Catalysts: From UHV to Operando Conditions
【2h】

Surface Spectroscopy on UHV-Grown and Technological Ni–ZrO2 Reforming Catalysts: From UHV to Operando Conditions

机译:Ni-ZrO2超重生长和技术重整催化剂的表面光谱:从特高压到运行条件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ni nanoparticles supported on ZrO2 are a prototypical system for reforming catalysis converting methane to synthesis gas. Herein, we examine this catalyst on a fundamental level using a 2-fold approach employing industrial-grade catalysts as well as surface science based model catalysts. In both cases we examine the atomic (HRTEM/XRD/LEED) and electronic (XPS) structure, as well as the adsorption properties (FTIR/PM-IRAS), with emphasis on in situ/operando studies under atmospheric pressure conditions. For technological Ni–ZrO2 the rather large Ni nanoparticles (about 20 nm diameter) were evenly distributed over the monoclinic zirconia support. In situ FTIR spectroscopy and ex situ XRD revealed that even upon H2 exposure at 673 K no full reduction of the nickel surface was achieved. CO adsorbed reversibly on metallic and oxidic Ni sites but no CO dissociation was observed at room temperature, most likely because the Ni particle edges/steps comprised Ni oxide. CO desorption temperatures were in line with single crystal data, due to the large size of the nanoparticles. During methane dry reforming at 873 K carbon species were deposited on the Ni surface within the first 3 h but the CH4 and CO2 conversion hardly changed even during 24 h. Post reaction TEM and TPO suggest the formation of graphitic and whisker-type carbon that do not significantly block the Ni surface but rather physically block the tube reactor. Reverse water gas shift decreased the H2/CO ratio. Operando studies of methane steam reforming, simultaneously recording FTIR and MS data, detected activated CH4 (CH3 and CH2), activated water (OH), as well as different bidentate (bi)carbonate species, with the latter being involved in the water gas shift side reaction. Surface science Ni–ZrO2 model catalysts were prepared by first growing an ultrathin “trilayer” (O–Zr–O) ZrO2 support on an Pd3Zr alloy substrate, and subsequently depositing Ni, with the process being monitored by XPS and LEED. Apart from the trilayer oxide, there is a small fraction of ZrO2 clusters with more bulk-like properties. When CO was adsorbed on the (fully metallic) Ni particles at pressures up to 100 mbar, both PM-IRAS and XPS indicated CO dissociation around room temperature and blocking of the Ni surface by carbon (note that on the partially oxidized technological Ni particles, CO dissociation was absent). The Ni nanoparticles were stable up to 550 K but annealing to higher temperatures induced Ni migration through the ultrathin ZrO2 support into the Pd3Zr alloy. Both approaches have their benefits and limitations but enable us to address specific questions on a molecular level.
机译:负载在ZrO2上的Ni纳米颗粒是用于重整催化反应的典型系统,将甲烷转化为合成气。在本文中,我们使用工业级催化剂以及基于表面科学的模型催化剂的2倍方法从根本上研究了该催化剂。在这两种情况下,我们都检查原子(HRTEM / XRD / LEED)和电子(XPS)结构以及吸附性能(FTIR / PM-IRAS),重点是在大气压条件下进行原位/操作数研究。对于工业用Ni-ZrO2,相当大的Ni纳米颗粒(直径约20 nm)均匀地分布在单斜氧化锆载体上。原位FTIR光谱和非原位X射线衍射表明,即使在673 K的氢气下暴露,镍表面也无法完全还原。 CO可逆地吸附在金属和氧化的Ni位置上,但在室温下未观察到CO解离,这很可能是因为Ni颗粒边缘/台阶包含Ni氧化物。由于纳米颗粒的大尺寸,CO解吸温度与单晶数据一致。在甲烷干重整过程中,在前3小时内,在873 K处的碳物质沉积在Ni表面上,但是即使在24小时内,CH4和CO2的转化率也几乎没有变化。反应后的TEM和TPO表明形成了石墨和晶须型碳,它们不会显着地阻挡Ni表面,而实际上会阻挡管式反应器。反向水煤气变换降低了H2 / CO比。甲烷蒸汽重整的Operando研究,同时记录FTIR和MS数据,检测到活化的CH4(CH3和CH2),活化的水(OH)以及不同的双齿碳酸盐(碳酸氢盐),后者参与了水煤气变换副反应。通过首先在Pd3Zr合金基底上生长超薄的“三层”(O-Zr-O)ZrO2载体,然后沉积Ni,并由XPS和LEED监控该过程,来制备表面科学的Ni-ZrO2模型催化剂。除三层氧化物外,还有一小部分ZrO2团簇具有更多的块状性质。当CO在高达100 mbar的压力下吸附在(全金属)Ni颗粒上时,PM-IRAS和XPS均表明CO在室温附近解离并被碳阻塞Ni表面(请注意,在部分氧化的工业Ni颗粒上,没有CO解离)。 Ni纳米颗粒在550 K时仍稳定,但退火至较高温度会诱导Ni通过超薄ZrO2载体迁移到Pd3Zr合金中。两种方法都有其优点和局限性,但使我们能够在分子水平上解决特定问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号