首页> 外文期刊>Applied Surface Science >High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays
【24h】

High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays

机译:基于TiO2 @ PANI核壳纳米线阵列的有序结构阴极催化剂层的高性能和耐久性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an order-structured cathode catalyst layer consisting of Pt-TiO2@PANI core-shell nanowire arrays that in situ grown on commercial gas diffusion layer (GDL) are prepared and applied to membrane electrode assembly (MEA) of proton exchange membrane fuel cell (PEMFC). In order to prepare the TiO2@PANI core-shell nanowire arrays with suitable porosity and prominent conductivity, the morphologies of the TiO2 nanoarray and electrochemical polymerization process of aniline are schematically investigated. The MEA with order-structured cathode catalyst layer is assembled in the single cell to evaluate the electrochemical performance and durability of PEMFC. As a result, the PEMFC with order structured cathode catalyst layer shows higher peak power density (773.54 mW cm(-2)) than conventional PEMFC (699.30 mW cm(-2)). Electrochemically active surface area (ECSA) and charge transfer impedance (R-ct) are measured before and after accelerated degradation test (ADT), and the corresponding experimental results indicate the novel cathode structure exhibits a better stability with respect to conventional cathode. The enhanced electrochemical performance and durability toward PEMFC can be ascribed to the order-structured cathode nanoarray structure with high specific surface area increases the utilization of catalyst and reduces the tortuosity of transport pathways, and the synergistic effect between TiO2@PANI support and Pt nanoparticles promotes the high efficiency of electrochemical reaction and improves the stability of catalyst. This research provides a facile and controllable method to prepare order-structured membrane electrode with lower Pt loading for PEMFC in the future. (C) 2017 Published by Elsevier B.V.
机译:本文制备了由Pt-TiO2 @ PANI核壳纳米线阵列组成的有序结构的阴极催化剂层,该催化剂层原位生长在商业气体扩散层(GDL)上,并应用于质子交换膜的膜电极组件(MEA)燃料电池(PEMFC)。为了制备具有合适的孔隙率和突出的电导率的TiO2 @ PANI核壳纳米线阵列,示意性地研究了TiO2纳米阵列的形貌和苯胺的电化学聚合过程。具有单级结​​构阴极催化剂层的MEA组装在单个电池中,以评估PEMFC的电化学性能和耐久性。结果,具有顺序结构的阴极催化剂层的PEMFC显示出比常规PEMFC(699.30 mW cm(-2))更高的峰值功率密度(773.54 mW cm(-2))。在加速降解测试(ADT)之前和之后测量电化学活性表面积(ECSA)和电荷转移阻抗(R-ct),并且相应的实验结果表明,新型阴极结构相对于常规阴极表现出更好的稳定性。对PEMFC增强的电化学性能和耐久性可以归因于具有高比表面积的有序结构的阴极纳米阵列结构,提高了催化剂的利用率,降低了运输途径的曲折性,并且TiO2 @ PANI载体与Pt纳米颗粒之间的协同作用促进了电化学反应效率高,提高了催化剂的稳定性。该研究为将来制备PEMFC具有较低Pt负载的有序结构的膜电极提供了一种简便可控的方法。 (C)2017由Elsevier B.V.发布

著录项

  • 来源
    《Applied Surface Science》 |2017年第1期|69-76|共8页
  • 作者单位

    Univ Sci & Technol Beijing, State Key Lab Adv Met, 30 Coll Rd, Beijing 100083, Peoples R China|Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Coll Rd, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, State Key Lab Adv Met, 30 Coll Rd, Beijing 100083, Peoples R China|Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Coll Rd, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, State Key Lab Adv Met, 30 Coll Rd, Beijing 100083, Peoples R China|Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Coll Rd, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, State Key Lab Adv Met, 30 Coll Rd, Beijing 100083, Peoples R China|Univ Sci & Technol Beijing, Sch Met & Ecol Engn, 30 Coll Rd, Beijing 100083, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Proton exchange membrane fuel cell; TiO2@PANI core-shell nanowires; Order-structured cathode catalyst layer; Performance; Durability;

    机译:质子交换膜燃料电池;TiO2 @ PANI核壳纳米线;有序结构的阴极催化剂层;性能;耐久性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号