首页> 外文期刊>Applied Physics >Compatibility of glass textures with E-beam evaporated polycrystalline silicon thin-film solar cells
【24h】

Compatibility of glass textures with E-beam evaporated polycrystalline silicon thin-film solar cells

机译:玻璃质感与电子束蒸发多晶硅薄膜太阳能电池的兼容性

获取原文
获取原文并翻译 | 示例

摘要

For polycrystalline silicon thin films on glass, E-beam evaporation capable of high-rate deposition of amorphous silicon (a-Si) film precursor up to 1 μm/minute is a potentially low-cost solution to replace the main stream a-Si deposition method-plasma enhanced chemical vapour deposition (PECVD). Due to weak absorption of near infrared light and a target of 2 urn Si absorber thickness, glass substrate texturing as a general way of light trapping is vital to make E-beam evaporation commercially viable. As a result, the compatibility of e-beam evaporation with glass textures becomes essential. In this paper, glass textures with feature size ranging from ~200 nm to ~ 1.5 micron and root-mean-square roughness (Rms) ranging from ~ 10 nm to 200 nm are prepared and their compatibility with e-beam evaporation is investigated. This work indicates that e-beam evaporation is only compatible with small smooth submicron sized textures, which enhances J_(sr) by 21 % without degrading V_(oc) of the cells. Such textures improve absorption-based J_(sr) up to 45 % with only 90 nm SiN_x as the antireflection and barrier layer; however, the enhancement degrades to ~10 % with 100 nm SiO_x + 90 nm SiN_x as the barrier layer. The absorption-based J_(sr) is abbreviated by J_(sr)(A), which is deduced by integrating the multiplication product of the measured absorption and the AM1.5G spectrum in the wavelength range 300-1050 nm assuming unity internal quantum efficiency at each wave/ength. This investigation is also relevant to other thin-film solar cell technologies which require evaporating the absorber onto textured substrate/superstrate.
机译:对于玻璃上的多晶硅薄膜,能够以高达1μm/ min的速度高速沉积非晶硅(a-Si)薄膜前体的电子束蒸发是一种潜在的低成本解决方案,可替代主流的a-Si沉积等离子体增强化学气相沉积(PECVD)方法。由于对近红外光的吸收较弱,并且目标硅吸收层的厚度为2微米,因此玻璃基板的纹理化(作为通常的光捕获方式)对于使电子束蒸发在商业上可行至关重要。结果,电子束蒸发与玻璃质地的相容性变得至关重要。本文制备了特征尺寸在〜200 nm至〜1.5微米范围内且均方根粗糙度(Rms)在〜10 nm至200 nm范围内的玻璃织构,并研究了其与电子束蒸发的相容性。这项工作表明,电子束蒸发仅与较小的亚微米级光滑纹理兼容,这可将J_(sr)提高21%,而不会降低细胞的V_(oc)。这种纹理将仅基于90 nm SiN_x作为减反射和阻挡层的基于吸收的J_(sr)提高了45%。但是,使用100 nm SiO_x + 90 nm SiN_x作为阻挡层时,增强作用降低到〜10%。基于吸收的J_(sr)缩写为J_(sr)(A),它是通过假设300-1050 nm波长范围内的单位内部量子效率对测量的吸收与AM1.5G光谱的乘积进行积分而得出的在每个波浪/强度。该研究也与其他要求将吸收剂蒸发到带纹理的基板/上层基板上的其他薄膜太阳能电池技术有关。

著录项

  • 来源
    《Applied Physics》 |2013年第3期|935-942|共8页
  • 作者单位

    School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;

    School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;

    School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号