首页> 外文期刊>Applied physics >Noise reduction and retrieval by modified lidar inversion method combines joint retrieval method and machine learning
【24h】

Noise reduction and retrieval by modified lidar inversion method combines joint retrieval method and machine learning

机译:改进的激光雷达反演方法结合降噪和联合学习与机器学习

获取原文
获取原文并翻译 | 示例

摘要

To address the problem in which the signal-to-noise ratio of a raw atmospheric lidar signal decreases rapidly as the range increases, which has a tremendous effect on the accuracy and the effective range of lidar retrieval, many de-noising algorithms have been proposed. Among these methods, those based on the ensemble Kalman Filter (EnKF) exhibit good performance. EnKF-based methods can simultaneously denoise lidar signals and yield accurate retrieval results. However, due to poor forecasting in the EnKF step, biases exist in the results of these methods. In this study, a modified lidar inversion method was proposed for horizontal aerosol characteristic retrieval, which combines the joint retrieval method and Gaussian processing machine learning. This method compensates for the poor forecasting in the EnKF step in the joint retrieval method through the Gaussian processing machine learning algorithm, which can reduce the biases in the retrieval results. The modified lidar inversion method was applied to both simulated and real lidar signals, and the results show that the modified lidar inversion method is effective and practical in aerosol extinction characteristics' analysis.
机译:为了解决原始大气激光雷达信号的信噪比随距离的增加而迅速降低的问题,这对激光雷达检索的准确性和有效范围产生巨大影响,提出了许多降噪算法。在这些方法中,基于集成卡尔曼滤波器(EnKF)的方法表现出良好的性能。基于EnKF的方法可以同时对激光雷达信号进行去噪并产生准确的检索结果。但是,由于EnKF步骤中的预测不佳,因此这些方法的结果存在偏差。在这项研究中,提出了一种改进的激光雷达反演方法,用于水平气溶胶特征检索,该方法将联合检索方法和高斯处理机器学习相结合。该方法通过高斯处理机学习算法弥补了联合检索方法在EnKF步骤中的较差预测,可以减少检索结果中的偏差。改进的激光雷达反演方法应用于模拟和真实的激光雷达信号,结果表明,改进的激光雷达反演方法在气溶胶消光特性分析中是有效和实用的。

著录项

  • 来源
    《Applied physics》 |2018年第12期|238.1-238.9|共9页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China;

    Wuhan Natl Res Ctr Optoelect, Huazhong Inst Electroopt, Wuhan 430223, Hubei, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号