首页> 外文期刊>Applied Physics Letters >Maximizing spin-orbit torque efficiency of Ta(O)/Py via modulating oxygen-induced interface orbital hybridization
【24h】

Maximizing spin-orbit torque efficiency of Ta(O)/Py via modulating oxygen-induced interface orbital hybridization

机译:通过调节氧气诱导的界面杂交来最大化TA(O)/ P的旋转轨道扭矩效率

获取原文
获取原文并翻译 | 示例

摘要

Spin-orbit torques due to interfacial Rashba and spin Hall effects have been widely considered as a potentially more efficient approach than the conventional spin-transfer torque to control the magnetization of ferromagnets. We report a comprehensive study of spin-orbit torque efficiency in Ta(O)/Ni_(81)Fe_(19) bilayers by tuning low-oxidation of β-phase tantalum and find that the spin Hall angle 0_(DL) increases from ~-0.18 of the pure Ta/Py to the maximum value ~-0.30 of Ta(O)/Py at 7.8% oxidation. Furthermore, we distinguish the spin-orbit torque efficiency generated by the bulk spin Hall effect and interfacial Rashba effect, respectively, via a series of Ta(O)/Cu(0-2 nm)/Py control experiments. The latter has more than twofold enhancement and is even more significant than the former at the optimum oxidation level. Our results indicate that 65% enhancement of the efficiency should be related to the modulation of the interfacial Rashba-like spin-orbit torque due to oxygen-induced orbital hybridization across the interface. Our results suggest that the modulation of interfacial coupling via oxygen-induced orbital hybridization can be an alternative method to boost the change-spin conversion efficiency.
机译:由于界面Rashba和Spin霍尔效应引起的旋转轨道扭矩被广泛认为是与传统的旋转转移扭矩相比的潜在有效的方法,以控制铁磁体的磁化。我们通过调整β相钽的低氧化来报告TA(O)/ Ni_(81)Fe_(19)双层的旋转轨道扭矩效率的综合研究,并发现旋转大厅角度0_(DL)从〜 -0.18纯Ta / py到Ta(O)/ py的最大值〜-0.30,氧化为7.8%。此外,我们通过一系列TA(O)/ Cu(0-2nm)/ py对照实验分别区分由散装旋转霍尔效应和界面RASHBA效应产生的旋转轨道扭矩效率。后者具有多于两倍以上的增强,并且在最佳氧化水平处比前者更大。我们的结果表明,由于氧气诱导的轨道杂交,效率的提高65%的提高应与界面杂交的界面RASHBA样旋转扭矩的调制有关。我们的研究结果表明,通过氧诱导的轨道杂交的界面偶联的调节可以是提高变化旋转转换效率的替代方法。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第3期|032405.1-032405.5|共5页
  • 作者单位

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    New Energy Technology Engineering Laboratory of Jiangsu Provence and School of Science Nanjing University of Posts and Telecommunications Nanjing 210023 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

    National Laboratory of Solid State Microstructures School of Physics and Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号