首页> 外文期刊>Applied Physics Letters >Piezoelectric response enhancement in the proximity of grain boundaries of relaxor-ferroelectric thin films
【24h】

Piezoelectric response enhancement in the proximity of grain boundaries of relaxor-ferroelectric thin films

机译:弛豫铁电薄膜晶界附近的压电响应增强

获取原文
获取原文并翻译 | 示例
       

摘要

The influence of surface morphology on the local piezoelectric response of highly (100)-textured 0.70PbMg_(2/3)Nb_(1/3)O_3-0.30PbTiO_3 thin films is studied using piezoresponse force microscopy in band-excitation mode. The local electromechanical response is mostly suppressed in direct proximity of the grain boundaries. However, within 100-200 nm of the grain boundary, the piezoresponse is substantially enhanced, before decaying again within a region at the center of the grain itself. Nested piezoresponse hysteresis curves confirm the influence of topography descriptors on parameters affecting the hysteresis loop shape. The enhancement of the electromechanical response is rationalized through reduced lateral clamping in the grains with deep trenched boundaries, as well as an expected lower energy for complex domain wall structures, due to curved ferroelectric surfaces. The lower piezoresponse at the center of the grain is assigned to the lateral clamping by the surrounding piezoelectric material.
机译:在带激励模式下,利用压电响应力显微镜研究了表面形貌对高(100)织构的0.70PbMg_(2/3)Nb_(1/3)O_3-0.30PbTiO_3薄膜的局部压电响应的影响。局部机电响应在晶界的直接接近中被大部分抑制。但是,在晶粒边界的100-200 nm范围内,压电响应得到了显着增强,然后在晶粒自身中心的区域内再次衰减。嵌套的压电响应磁滞曲线证实了形貌描述子对影响磁滞回线形状的参数的影响。通过减少在具有深沟槽边界的晶粒中的侧向夹持,以及由于弯曲的铁电表面,对于复杂的畴壁结构而言预期的较低能量,可以合理地增强机电响应。晶粒中心的下部压电响应通过周围的压电材料分配给横向夹持。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第24期|242908.1-242908.5|共5页
  • 作者单位

    G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6496, USA,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6496, USA;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6496, USA,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6496, USA;

    G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号