首页> 外文期刊>Applied numerical mathematics >A-posteriori error estimations based on postprocessing technique for two-sided fractional differential equations
【24h】

A-posteriori error estimations based on postprocessing technique for two-sided fractional differential equations

机译:基于双面分数微分方程的后处理技术的A-后验误差估计

获取原文
获取原文并翻译 | 示例

摘要

The analysis of diffusion-reaction equations with general two-sided fractional derivative characterized by a parameter p ∈ [0,1 ] is investigated in this paper. First, we present a Petrov-Galerkin method, derive a proper weak formulation and show the well-posedness of its weak solution. Moreover, on the basis of the two-sided Jacobi polyfractonomials, a priori error analysis of Petrov-Galerkin method is derived. Further, a posteriori error analysis is established rigorously. More precisely, we develop a novel postprocessing technique to enhance the Petrov-Galerkin method by adding a small amount of computation, and analyze asymptotically exact a-posteriori error estimators. Finally, we demonstrate the theoretical results with numerical examples.
机译:本文研究了具有参数P∞[0,1]的一般双面分数衍生物的扩散反应方程的分析。 首先,我们提出了一种Petrov-Galerkin方法,获得了适当的弱配方,并显示出弱溶液的良好姿势。 此外,基于双面雅各的多违法行凭,推导了Petrov-Galerkin方法的先验误差分析。 此外,严格建立后验误差分析。 更精确地,我们开发了一种新的后处理技术,通过添加少量计算来增强Petrov-Galerkin方法,并分析渐近精确的A-Bouthiori误差估计。 最后,我们用数值例子展示了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号