首页> 外文期刊>Computers & mathematics with applications >A-posteriori error estimations of the GJF-Petrov-Galerkin methods for fractional differential equations
【24h】

A-posteriori error estimations of the GJF-Petrov-Galerkin methods for fractional differential equations

机译:分数微分方程GJF-Petrov-Galerkin方法的A-Bouthiori误差估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop an efficient spectral GJF-Petrov-Galerkin algorithm and the postprocessed method to solve a class of fractional initial value problems. The main part of these algorithms is to use a special set of general Jacobi functions (GJFs) to form the trial space and test space. We give a rigorous error analysis in non-uniformly weighted Sobolev spaces and obtain optimal error estimates. In particular, the postprocessing technique is used to construct the postprocessed method. In addition, we derive its superconvergence estimates and define a-posteriori error estimators that are asymptotically exact. Numerical experiments are included to support the theoretical analysis.
机译:在本文中,我们开发了一种高效的光谱GJF-Petrov-Galerkin算法和后处理方法来解决一类分数初始值问题。 这些算法的主要部分是使用一组特殊的常规Jacobi函数(GJF)来形成试验空间和测试空间。 我们在非统一加权SoboLev空格中提供严格的错误分析,并获得最佳误差估计。 特别地,后处理技术用于构建后处理方法。 此外,我们得出了其超级度验证估计,并定义了渐近精确的误差估计值。 包括数值实验以支持理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号