首页> 外文期刊>Applied numerical mathematics >Lyapunov exponents spectrum estimation of fractional order nonlinear systems using Cloned Dynamics
【24h】

Lyapunov exponents spectrum estimation of fractional order nonlinear systems using Cloned Dynamics

机译:Lyapunov指数使用克隆动力学的分数阶非线性系统的频谱估计

获取原文
获取原文并翻译 | 示例

摘要

This work presents the determination of Lyapunov spectrum of fractional order dynamical systems. The method considers the Cloned Dynamic technique, which is based on time evaluation of exact copies of dynamic equations with small initial conditions disturbances. As its calculations are simple, this method can be applied to various dynamic systems types, in particular fractional order, nonlinear and time varying systems, and non linear systems where Jacobian are impossible to evaluate. The predictor-corrector Adams-Bashforth-Moulton algorithm is used for fractional order system numerical evaluation. All Lyapunov exponents are estimated based on the convergence or divergence of the small disturbed clones with respect to the reference (fiducial) trajectory and application of Gram-Schmidt Reorthonormalization after each convenient periodic time interval. To evaluate the application of this method, three third order dynamical systems are explored: Jerk, Financial, and a Four Wing systems. Integer order, commensurate fractional order and incommensurate fractional order are explored. To confirm chaotic or non-chaotic behavior, 0-1 Test is used and Jerk system is studied with a classical method for Lyapunov exponents determination also. The advantages and contribution of the proposed method the possibility to study incommensurate orders fractional cases and explore non linear systems without need of Jacobian determination, as is proved with applications shown. The Lyapunov Exponents and the phase portraits were simulated together to validate this method and the obtained results are in good agreement.
机译:这项工作介绍了分数阶动态系统的Lyapunov光谱的确定。该方法考虑克隆动态技术,基于具有小初始条件干扰的动态方程的精确副本的时间评估。随着其计算简单,该方法可以应用于各种动态系统类型,特别是小数顺序,非线性和时间变化系统,以及雅可比的非线性系统是不可能评估的。预测器 - 校正器Adams-Bashforth-Moulton算法用于分数阶数值数值评估。所有Lyapunov指数估计基于小扰动克隆对参考(基准)轨迹的收敛性或分歧,并在每个方便的周期性时间间隔后的克施密特reorthonoralization的应用。为了评估该方法的应用,探索了三个三阶动态系统:混蛋,金融和四个翼系统。探讨了整数,分数顺序和收取的分数顺序。为了确认混沌或非混沌行为,使用0-1测试,并使用Jerk系统对Lyapunov指数的典型方法进行了研究。所提出的方法的优点和贡献在不需要Jacobian测定的情况下,研究了不加入的订单分数案例和探索非线性系统的可能性,如图所示。 Lyapunov指数和相位肖像被模拟在一起以验证这种方法,所获得的结果很吻合。

著录项

  • 来源
    《Applied numerical mathematics》 |2020年第8期|187-204|共18页
  • 作者单位

    Faculty of Food Engineering and Animal Science of University of Sao Paulo. 13635-900 Pirassununga SP Brazil;

    Department of Physics Faculty of Science The University of Maroua P.O. Box. 814 Maroua Cameroon;

    Department of Physics Faculty of Science The University of Maroua P.O. Box. 814 Maroua Cameroon The Abdus Salam International Centre for Theoretical Physics P.O. Box 538 Strada Costiera 11 1-34014 Trieste Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lyapunov exponents; Cloned Dynamic method; Fractional order system;

    机译:Lyapunov指数;克隆动态方法;分数阶系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号