首页> 外文期刊>Applied numerical mathematics >A Chebyshev pseudo-spectral method for the multi-dimensional fractional Rayleigh problem for a generalized Maxwell fluid with Robin boundary conditions
【24h】

A Chebyshev pseudo-spectral method for the multi-dimensional fractional Rayleigh problem for a generalized Maxwell fluid with Robin boundary conditions

机译:具有Robin边界条件的广义Maxwell流体多维分数瑞利问题的Chebyshev伪谱方法

获取原文
获取原文并翻译 | 示例

摘要

Many pseudospectral schemes have been developed for time fractional partial differential equations, most of which use the spectral tau method. In this study, we develop an accurate numerical scheme using a combination of Lagrange and Chebyshev polynomials of the first kind for the multi-dimensional fractional Rayleigh problem integrated using the Gauss-Lobatto quadrature. The Chebyshev expansion coefficients are evaluated using the orthogonality condition of the polynomials. Arbitrary temporal derivatives are approximated using shifted Chebyshev polynomials, while the spatial derivatives are approximated using Lagrange basis functions. To establish the accuracy of the proposed scheme, we present a convergence analysis of the absolute errors. The convergence analysis shows that the absolute error tends to zero for sufficiently large number of collocation points.
机译:对于时间分数偏微分方程,已经开发了许多伪谱方案,其中大多数使用谱tau方法。在这项研究中,我们针对第一类Lagrange和Chebyshev多项式的组合,开发了一种精确的数值方案,用于解决使用高斯-洛巴托正交积分的多维分数瑞利问题。使用多项式的正交性条件评估切比雪夫展开系数。使用移位的Chebyshev多项式来近似任意时间导数,而使用Lagrange基函数来近似空间导数。为了建立所提出方案的准确性,我们提出了绝对误差的收敛分析。收敛分析表明,对于足够多的搭配点,绝对误差趋于零。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号