首页> 外文期刊>Applied numerical mathematics >Convergence of the split-step θ-method for stochastic age-dependent population equations with Markovian switching and variable delay
【24h】

Convergence of the split-step θ-method for stochastic age-dependent population equations with Markovian switching and variable delay

机译:具有马尔可夫切换和可变时滞的随机年龄相关种群方程的分步θ方法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

We present a stochastic age-dependent population model that accounts for Markovian switching and variable delay. By using the approximate value at the nearest grid point on the left of the delayed argument to estimate the delay function, we propose a class of split-step theta-method for solving stochastic delay age-dependent population equations (SDAPEs) with Markovian switching. We show that the numerical method is convergent under the given conditions. Numerical examples are provided to illustrate our results. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
机译:我们提出了一种随机的,年龄相关的人口模型,该模型解释了马尔可夫切换和可变时滞。通过使用延迟参数左侧最接近的网格点处的近似值来估计延迟函数,我们提出了一类分裂步长theta-方法,用于通过马尔可夫切换来求解与年龄相关的随机延迟种群方程(SDAPE)。我们证明了数值方法在给定条件下是收敛的。提供了数值示例来说明我们的结果。 (C)2019年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号