首页> 外文期刊>Applied numerical mathematics >A high order discontinuous Galerkin method with Lagrange multipliers for second-order elliptic problems
【24h】

A high order discontinuous Galerkin method with Lagrange multipliers for second-order elliptic problems

机译:带有Lagrange乘子的高阶不连续Galerkin方法用于二阶椭圆问题

获取原文
获取原文并翻译 | 示例

摘要

A discontinuous Galerkin method with Lagrange multipliers (DGLM) is developed to approximate the solution to the second-order elliptic problems. Lagrange multipliers for the solution and for the flux are considered on the edge/face of each element. The weak gradient and the weak divergence are defined for the elliptic problems. Lagrange multipliers for the solution and for the flux are shown to be the averages of the solutions and the "normal" fluxes at the edge/face, respectively. Unique solvability of the discrete system is proved and an error estimate is derived. The element unknowns are solved in terms of the Lagrange multipliers in element by element fashion. The Schur complement system of the Lagrange multipliers has a block structure, which is kept unchanged while the inside of the blocks gets dense in the higher order approximation. An explanation on algorithmic aspects is given. Some numerical results are presented. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:开发了具有拉格朗日乘数(DGLM)的不连续Galerkin方法,以近似求解二阶椭圆问题。在每个元素的边缘/面上都考虑了溶液和通量的拉格朗日乘数。为椭圆问题定义了弱梯度和弱散度。溶液和通量的拉格朗日乘数分别显示为溶液和边缘/面通量的平均值。证明了离散系统的唯一可解性,并得出了误差估计。根据拉格朗日乘子逐个元素地求解元素未知数。拉格朗日乘法器的舒尔补码系统具有块结构,该块结构保持不变,而块内部以更高阶的近似值变得密集。给出了算法方面的解释。给出了一些数值结果。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号