首页> 外文期刊>Applied numerical mathematics >Solving multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type using Bernstein polynomials method
【24h】

Solving multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type using Bernstein polynomials method

机译:使用伯恩斯坦多项式方法用线性Volterra-Fredholm中立型线性积分微分方程求解多点问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the Bernstein polynomials method is proposed for the numerical solution of a class of multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type. The main characteristic behind this method lie in the fact that, on the one hand, the problem will be reduced to a system of algebraic equations. On the other hand, the efficiency and accuracy of Bernstein polynomials method for solving these equations are high, which will be shown by preparing some theorems. Also, the existence and uniqueness of solution have been proved. Finally, the numerical experiments are presented to show the excellent behavior and high accuracy of proposed scheme in comparison with some other well-known methods. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:本文针对线性中立型Volterra-Fredholm积分-微分方程的多点问题的数值解,提出了Bernstein多项式方法。这种方法的主要特点在于,一方面,将问题简化为代数方程组。另一方面,伯恩斯坦多项式方法求解这些方程的效率和准确性很高,这将通过准备一些定理来证明。同样,证明了解的存在性和唯一性。最后,通过数值实验证明了该方案与其他一些众所周知的方法相比具有优异的性能和较高的精度。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号