首页> 外文期刊>Applied numerical mathematics >Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis
【24h】

Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis

机译:基于EEG源分析的有限元方法中不同潜在方法和迭代求解器的精度和运行时比较

获取原文
获取原文并翻译 | 示例

摘要

Accuracy and run-time play an important role in medical diagnostics and research as well as in the field of neuroscience. In Electroencephalography (EEG) source reconstruction, a current distribution in the human brain is reconstructed noninvasively from measured potentials at the head surface (the EEG inverse problem). Numerical modeling techniques are used to simulate head surface potentials for dipolar current sources in the human cortex, the so-called EEG forward problem.rnIn this paper, the efficiency of algebraic multi-grid (AMG), incomplete Cholesky (IC) and Jacobi preconditioners for the conjugate gradient (CG) method are compared for iteratively solving the finite element (FE) method based EEG forward problem. The interplay of the three solvers with a full subtraction approach and two direct potential approaches, the Venant and the partial integration method for the treatment of the dipole singularity is examined. The examination is performed in a four-compartment sphere model with anisotropic skull layer, where quasi-analytical solutions allow for an exact quantification of computational speed versus numerical error. Specifically-tuned constrained Delaunay tetrahedralization (CDT) FE meshes lead to high accuracies for both the full subtraction and the direct potential approaches. Best accuracies are achieved by the full subtraction approach if the homogeneity condition is fulfilled. It is shown that the AMG-CG achieves an order of magnitude higher computational speed than the CG with the standard preconditioners with an increasing gain factor when decreasing mesh size. Our results should broaden the application of accurate and fast high-resolution FE volume conductor modeling in source analysis routine.
机译:准确性和运行时间在医学诊断和研究以及神经科学领域中起着重要作用。在脑电图(EEG)源重建中,从头部表面的测量电位无创地重建人脑中的电流分布(EEG反问题)。数值建模技术被用于模拟人皮层中偶极电流源的头部表面电位,即所谓的EEG正向问题。本文研究了代数多重网格(AMG),不完全Cholesky(IC)和Jacobi预处理器的效率比较了共轭梯度法(CG)的迭代求解基于有限元(FE)法的EEG正向问题。研究了三种求解器与完全减法和两种直接势方法(维南和部分积分方法)的偶极奇异性之间的相互作用。该检查是在具有各向异性头骨层的四室球形模型中进行的,其中准解析解可以精确量化计算速度与数值误差之间的关系。经过专门调整的约束Delaunay四面体化(CDT)有限元网格可为全相减法和直接势能法带来很高的准确性。如果满足同质性条件,则通过完全减法可以实现最佳精度。结果表明,当减小网格尺寸时,AMG-CG的计算速度要比使用标准预处理器的CG高出一个数量级,并且增益因子增加。我们的结果将拓宽精确和快速的高分辨率有限元体积导体建模在源分析程序中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号