...
首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Geometry-Adapted Hexahedral Meshes Improve Accuracy of Finite-Element-Method-Based EEG Source Analysis
【24h】

Geometry-Adapted Hexahedral Meshes Improve Accuracy of Finite-Element-Method-Based EEG Source Analysis

机译:适应几何的六面体网格提高了基于有限元方法的脑电信号源分析的准确性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mesh generation in finite-element- (FE) method-based electroencephalography (EEG) source analysis generally influences greatly the accuracy of the results. It is thus important to determine a meshing strategy well adopted to achieve both acceptable accuracy for potential distributions and reasonable computation times and memory usage. In this paper, we propose to achieve this goal by smoothing regular hexahedral finite elements at material interfaces using a node-shift approach. We first present the underlying theory for two different techniques for modeling a current dipole in FE volume conductors, a subtraction and a direct potential method. We then evaluate regular and smoothed elements in a four-layer sphere model for both potential approaches and compare their accuracy. We finally compute and visualize potential distributions for a tangentially and a radially oriented source in the somatosensory cortex in regular and geometry-adapted three-compartment hexahedra FE volume conductor models of the human head using both the subtraction and the direct potential method. On the average, node-shifting reduces both topography and magnitude errors by more than a factor of 2 for tangential and 1.5 for radial sources for both potential approaches. Nevertheless, node-shifting has to be carried out with caution for sources located within or close to irregular hexahedra, because especially for the subtraction method extreme deformations might lead to larger overall errors. With regard to realistic volume conductor modeling, node-shifted hexahedra should thus be used for the skin and skull compartments while we would not recommend deforming elements at the grey and white matter surfaces.
机译:基于有限元(FE)方法的脑电图(EEG)源分析中的网格生成通常会极大地影响结果的准确性。因此,重要的是确定一种良好的网格划分策略,以实现对潜在分布的可接受准确性以及合理的计算时间和内存使用率。在本文中,我们建议通过使用节点移位方法在材料界面处平滑规则的六面体有限元来实现此目标。我们首先介绍两种不同技术的基本理论,这些技术用于模拟有限元体积导体中的电流偶极子,减法和直接势法。然后,我们针对两种可能的方法在四层球体模型中评估规则元素和平滑元素,并比较其准确性。最后,我们使用减法和直接电势方法,在人体头部的规则和几何适应的三室六面体有限体积导体模型中,计算并可视化了体感皮质中切向和径向方向的源的电势分布。平均而言,对于两种可能的方法,节点移动将地形和幅值误差都减少了2倍以上(切向)和1.5倍(径向源)。但是,对于位于不规则六面体内部或附近的源,必须谨慎执行节点移动,因为特别是对于减法,极端变形可能会导致更大的整体误差。关于实际的体积导体建模,应将节点移动的六面体用于皮肤和颅骨隔室,而我们不建议在灰色和白色物质表面变形元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号