首页> 外文期刊>Applied numerical mathematics >Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method
【24h】

Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method

机译:二阶椭圆问题的渐近误差展开和特征值近似的Richardson外推法

获取原文
获取原文并翻译 | 示例

摘要

The paper provides a general procedure or method to produce asymptotic error expansion for the eigenvalue approximations of second order elliptic problems by the mixed finite element method. We obtain a transform lemma for the error of the eigenvalue approximations. As an application of the transform lemma, the asymptotic error expansion of the eigenvalue approximations for the second order elliptic problem by the lowest order Raviart-Thomas mixed finite element method is given by means of integral identity technique. Based on such an error expansion, Richardson extrapolation technique is applied to improve the accuracy of the eigenvalue approximations.
机译:通过混合有限元方法,为二阶椭圆问题的特征值逼近提供渐近误差展开的一般过程或方法。我们获得了特征值近似误差的变换引理。作为变换引理的一种应用,利用积分身份技术给出了最低阶Raviart-Thomas混合有限元方法对二阶椭圆问题特征值逼近的渐近误差展开。基于这种误差扩展,理查森外推技术被用于提高特征值近似的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号