首页> 外文期刊>Applied numerical mathematics >Kantorovich-type convergence criterion for inexact Newton methods
【24h】

Kantorovich-type convergence criterion for inexact Newton methods

机译:不精确牛顿法的Kantorovich型收敛准则

获取原文
获取原文并翻译 | 示例

摘要

Assuming that the first derivative of an operator satisfies the Lipschitz condition, a Kantorovich-type convergence criterion for inexact Newton methods is established, which includes the well-known Kantorovich's theorem as a special case. Comparisons and a numerical example are presented to illustrate that our results obtained in the present paper improve and extend some recent results in [X.P. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2007) 231-242; W.P. Shen, C. Li, Convergence criterion of inexact methods for operators with Holder continuous derivatives, Taiwan. J. Math. 12 (2008) 1865-1882].
机译:假设算子的一阶导数满足Lipschitz条件,则建立了不精确牛顿法的Kantorovich型收敛准则,其中包括著名的Kantorovich定理作为特例。通过比较和数值示例说明了我们在本文中获得的结果改进并扩展了[X.P.郭,关于不精确牛顿法的半局部收敛,J。数学。 25(2007)231-242; W.P. Shen C. Li,持有人连续导数的算子不精确方法的收敛准则,台湾。 J.数学12(2008)1865-1882]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号